Zbadano adsorpcję 4-chlorofenolu (4-CP) na zredukowanym tlenku grafenu i nanorurkach węglowych oraz (dla porównania) na sadzy. Adsorpcja zachodziła najszybciej na grafenie i była dobrze opisana modelem kinetycznym pseudo II rz. W warunkach równowagowych adsorpcja przebiegała zgodnie z równaniem izotermy Langmuira. Najlepszym adsorbentem okazała się sadza, a najmniejszą pojemnością adsorpcyjną w stosunku do 4-CP charakteryzowały się nanorurki węglowe. Wszystkie trzy materiały węglowe zostały wykorzystane do przygotowania włókien do mikroekstrakcji do fazy stacjonarnej. Odpowiednio spreparowane włókna zastosowano do detekcji 4-CP w środowisku wodnym.
EN
Reduced graphene oxide, C nanotubes and C black were deposited on silicone fibers by sol-gel method and used for microextn. of 4-ClC6H4OH from aq. solns. The adsorbed 4-ClC6H4OH was then detd. by gas chromatog. The rate of adsorption of 4-ClC6H4OH was the highest in case of reduced graphene oxide and lowest on the C black. The adsorption equil. was described by Langmuir isotherm. The C black showed the highest adsorption capacity. The prepd. fibers were more efficient than the com. polydimethylsiloxane and polyacrylate ones.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Food analysis is very important for the evaluation of the nutritional value and quality of fresh and processed products, and for monitoring food additives and other toxic contaminations. Sample preparation such as extraction, concentration and isolation of analytes, greatly influences the reliable and accurate analysis of food. Currently there are some techniques of sample preparation such as SPE, SPME, MSPD, SFE, which have the following characteristic features: - Speed - Reduced labor - Better recoveries - Improved sample-to-sample consistency - Significantly reduced solvent consumption and waste - Ruggedness and reliability. Solid-phase extraction (SPE) is a rapid and sensitive sample preparation technique, whose use has considerably increased within the last decade. This emerging technology has successfully replaced many tedious conventional methods of isolation and extraction of various chemicals in food. Sample preparation and concentration via SPE can be achieved in a one-step extraction, and the methodology is appropriate for isolating trace amounts of chemical compounds from complex matrices such as food. Solid-phase microextraction (SPME) is a new sample preparation technique using a fused-silica fibre that is coated on the outside with an appropriate stationary phase. This technique has been successfully applied in the analysis of pesticides in food. Supercritical fluid extraction (SFE) is sample preparation technique, which does not use organic solvents for trapping and for washing out of analytes. SFE usually with carbon dioxide and often with a modifier, is a rapid, selective and convenient method for sample clean-up in environmental analysis. In the past decade, SFE has been applied successfully to the extraction of a variety of organic compounds, e.g. pesticides from herbs, food and agricultural samples. Three inter-related factors influence analyte recovery in SFE: solubility in the fluid, diffusion through the matrix and adsorption in the matrix. Matrix solid-phase dispersion (MSPD), a patented process for the simultaneous disruption and extraction of solid and semi-solid samples, was first reported in 1989. Since that time, MSPD has found application in numerous fields, but has proved to be particularly applicable for the analysis of drugs, pesticides and other components in food. MSPD enables complete fractionation of the sample matrix components as well as selective elution of a single compound or several classes of compounds from the same sample. The method has been applied to the isolation of pesticides from animal tissues, fruit, vegetables and other matrices. --
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.