Consider a multiply connected domain D bounded by nonoverlapping circles. Introduce the complex potential u(z) = Re ϕ(z) in D where the function ϕ(z) is analytic in D except at infinity where ϕ(z) ∼ z. The function u(z) models the distribution of temperature in the domain D. The unknown function ϕ(z) is continuously differentiable in the closures of the considered domain. We solve approximately the modified Schwarz problem when u(z) = Re ϕ(z) is equal to an undetermined constant on every boundary component of D by a method of functional equations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.