Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SCOR
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom nr 6
39--45
PL
Przedstawiamy i ilustrujemy moduł taktyczny (ART-T) nowej modułowej metody oceny technologii RFID (ART). Stosujemy TOPSIS, model SCOR, skalę lingwistyczną, liczby rozmyte i wywiady bezpośrednie w celu uzyskania odpowiedzi na pytanie „które procesy wybrać do usprawniania w oparciu o wdrożenie RFID".
EN
We elaborate and illustrate tactical module (ART-T) of new Assessment of RFID Technology (ART) modular method. We apply TOPSIS, SCOR model, linguistic scales, fuzzy sets and questionnaires to answer the question "which processes should be chosen for RFID-based reengineering and/or improvement".
|
|
tom 5(2)
65-79
EN
Supply chain management in the modern era requires the use of advanced tools and methodologies to meet dynamic market challenges. The article presents two key reference models in supply chain management: SCOR (Supply Chain Operations Reference) and GSCF (Global Supply Chain Forum) and focuses on how the use of big data and data science tools can strengthen these models, enabling better monitoring, process optimization, and response to market changes. The article discusses the applications of big data and data science in supply chain management. Real-time data analysis allows for precise demand forecasting, inventory optimization, and risk identification. At the operational and tactical levels, big data can be used for optimizing vehicle routes, fleet management, improving customer service, and product recommendations. At the strategic level, big data supports product design, network planning, and business strategy. Furthermore, the article presents data science tools developed by LOKAD for supply chain management. LOKAD utilizes advanced forecasting methods, including quantile and probabilistic forecasts, to account for extreme values, and the latest approach based on differential programming enabling simultaneous optimization of multiple supply chain scenarios, ensuring excellent numerical results at minimal costs.
PL
Zarządzanie łańcuchami dostaw w erze współczesnej wymaga stosowania zaawansowanych narzędzi i metodologii, aby sprostać dynamicznym wyzwaniom rynkowym. Celem artykułu jest przedstawienie dwóch modeli referencyjnych w zarządzaniu łańcuchami dostaw: SCOR (Supply Chain Operations Reference) oraz GSCF (Global Supply Chain Forum). Artykuł skupia się na tym, jak wykorzystanie narzędzi big data i data science może wzmocnić te modele, umożliwiając lepsze monitorowanie, optymalizację procesów i reakcję na zmiany rynkowe. Zastosowanie tych metod w rzeczywistych środowiskach biznesowych zostało przedstawione na przykładzie implementacji technologii analizy danych w firmie LOKAD. Wyniki rozważań pokazują, że analiza danych w czasie rzeczywistym pozwala na precyzyjne prognozowanie popytu, optymalizację zapasów i identyfikację ryzyka. Na poziomie operacyjnym i taktycznym narzędzie big data może być wykorzystywane do optymalizacji tras pojazdów, zarządzania flotą, poprawy obsługi klienta i rekomendacji produktów. Na poziomie strategicznym big data wspiera projektowanie produktów, planowanie sieci i strategię biznesową.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.