In videogames industry, time series analysis can be very useful in determining the general evolution and behaviour of the market dynamics. These methods are applicable to any time series forecasting problem, regardless of the application sector. This article discusses time series approaches to forecast the sales of console games for the Italian market. In particular two univariate techniques were evaluated, exponential smoothing and the SARIMA technique. The aim is to exploit the capabilities of these statistical methods in order to have a comparison of the results and to choose the most accurate model through an ex-post evaluation. Using monthly time-series data from November 2005 to September 2017, the selection of the most suitable model was indicated by the smallest value of the measures of accuracy (MAPE, sMAPE, RMSE) for the out-of-sample observations regarding the period October 2017-September 2018. The implementation of the models was done using Forecast PRO and Gretl. The time series involved is related to the sales regarding the first party manufacturers of consoles and handhelds (Microsoft, Sony and Nintendo).
Artykuł jest częścią pierwszą cyklu „Prognozowanie produkcji budowlano montażowej w województwie dolnośląskim”. Założono, że wynagrodzenie pracowników będzie jedną ze zmiennych niezależnych do wyznaczenia wielkości produkcji. Prognozowano wynagrodzenia pracowników w sektorze budowlanym metodami regresji wielorakiej i metodą autoregresji średniej ruchomej SARIMA. Przeprowadzono analizę wyników obliczając błędy ME, MAE, MPE, MAPE oraz współczynniki Theila I, I2, I12, I22, I32. Sformułowano wnioski z obliczeń. Wyznaczono równanie regresji wielorakiej z 12 predyktorami wytypowanymi spośród 53 zmiennych niezależnych. Uzyskano dane prognozowane do predykcji produkcji budowlano montażowej.
EN
The article is the first part of the series „Prediction construction and assembly production in Lower Silesia.” It was assumed that salary of employees will be one of the independent variables to determine the volume of production. Salaries of employees was predicted, using multiple regression and autoregressive moving average SARIMA methods. An analysis of the results was carried out. The errors ME, MAE, MPE, MAPE and Theil coefficients I, I2, I12, I22, I32 were calculated. Multiple regression equation with 12 predictors was set. Predictors were selected from among the 53 independent variables. Forecasted data were obtained for construction and assembly production prediction.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The modern power grid faces challenges regarding many complex factors affecting both demand and generation; including growth in demand; incorporating large-scale renewable power penetration; uncertainties in climate change; lack of historical data; and coordination of the large volume of data. These issues have resulted in complications in forecasting load and generation in microgrids. The loads are becoming more erratic and the generation is intermittent. Thus, this paper presents a study of different forecasting approaches for load and generation, by comparing multiple univariate and multivariate methods to analyse their effect. The study also proposes seasonal models: the SARIMA model taking into consideration the historical load, the correlation of weather data and renewable integration to estimate future behaviour of the microgrid by predicting one day ahead using critical load data; whereas the Holt Winters method is used for generation forecasting. A case study is simulated using realworld microgrid data for the selected geographic location in Australia. The results suggest that for the day-ahead load forecast, the SARIMA model performed relatively better compared to MLR, Holt-Winters additive and multiplicative methods; whereas, for generation forecasting, Holt-Winters Additive Method and SARIMA perform well for Autumn and Summer respectively. The results suggest that the proposed approach of using different seasonal models for load and generation forecasting yields higher accuracy as compared to conventional forecasting.
PL
Nowoczesna sieć energetyczna stoi przed wyzwaniami dotyczącymi wielu złożonych czynników wpływających zarówno na popyt, jak i na wytwarzanie; w tym wzrost popytu; włączenie penetracji energii odnawialnej na dużą skalę; niepewność w zmianach klimatu; brak danych historycznych; i koordynacja dużej ilości danych. Problemy te spowodowały komplikacje w prognozowaniu obciążenia i generacji w mikrosieciach. Obciążenia stają się coraz bardziej nieregularne, a generacja jest przerywana. Dlatego w niniejszym artykule przedstawiono badanie różnych podejść do prognozowania obciążenia i generacji, porównując wiele metod jednowymiarowych i wielowymiarowych w celu przeanalizowania ich wpływu. W badaniu zaproponowano również modele sezonowe: model SARIMA uwzględniający obciążenie historyczne, korelację danych pogodowych i integrację odnawialną w celu oszacowania przyszłego zachowania mikrosieci poprzez prognozowanie z jednodniowym wyprzedzeniem przy użyciu danych o obciążeniu krytycznym; natomiast do prognozowania generacji wykorzystywana jest metoda Holta Wintersa. Studium przypadku jest symulowane przy użyciu rzeczywistych danych mikrosieci dla wybranej lokalizacji geograficznej w Australii. Wyniki sugerują, że w przypadku prognozy obciążenia dnia następnego model SARIMA sprawował się relatywnie lepiej w porównaniu z metodami addytywnymi i multiplikatywnymi MLR, Holta-Wintersa; podczas gdy w przypadku prognozowania generacji, metoda Holt-Winters Additive Method i SARIMA dobrze sprawdzają się odpowiednio w okresie jesiennym i letnim. Wyniki sugerują, że zaproponowane podejście polegające na wykorzystaniu różnych modeli sezonowych do prognozowania obciążeń i generacji zapewnia wyższą dokładność w porównaniu z prognozowaniem konwencjonalnym.
Prognozowanie szeregów czasowych stało się niezbędne w procesie kontrolowania procesów zachodzących w systemach informatycznych Ministerstwa Finansów. Wymierne w sensie finansowym są problemy braku lub niepełnej aktualizacji relacyjnej bazy danych JPK_VAT w akceptowalnym przez prawo terminie. W tym przypadku niezwykle ważna okazuje się umiejętność zastosowania nie tylko klasycznych modeli uwzględniających składniki sezonowe (np. SARIMA), ale także złożone składniki systematyczne (BATS/TBATS). Dokonano analizy szeregów czasowych pod kątem występowania składników systematycznych, postawiono prognozy i przetestowano reszty. Otrzymano i zestawiono wyniki testów wskazujące na konieczność zastosowania modelu TBATS.
EN
The forecasting of different time series became necessary process at the Ministry of Finance IT systems. The problems with lack of information and actual updates of Standard Audit Files for Tax are known. Capabilities to choosing right predicting model of time series with complex seasonal patterns are crucial in some cases. In the article, author made the decomposition of time series with complex seasonal patterns. The results of modeling and testing indicated the best predicting (according to Mean Absolute Percentage Error) and time series decomposition method – TBATS.
Modelowanie szeregów czasowych stało się niezbędne w procesie kontrolowania procesów zachodzących w systemach informatycznych Ministerstwa Finansów RP. Wymierne w sensie finansowym są problemy braku lub niepełnej aktualizacji relacyjnej bazy danych JPK_VAT w akceptowalnym przez prawo terminie. W tym przypad-ku niezwykle ważna okazuje się umiejętność zastosowania nie tylko klasycznych modeli uwzględniających składniki sezonowe (np. SARIMA), ale także złożone składniki systematyczne (BATS/TBATS). Dokonano analizy szeregów czasowych pod kątem występowania składników systematycznych, estymowano parametry strukturalne modeli, otrzymano i zestawiono wyniki testów wskazujące na konieczność zastosowania modelu TBATS.
EN
The modeling different time series became necessary process at the Ministry of Finance IT systems. The problems with lack of information and actual updates of Standard Audit Files for Tax are known. Capabilities to choosing right model of time series with complex seasonal patterns are crucial in some cases. In the article, author made the decomposition of time series with complex seasonal patterns. The results of modeling and testing indicated the best predicting (according to Mean Absolute Percentage Error) and time series decomposition method – TBATS.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.