Elastic periodic structures with variable material and geometrical properties exhibit dynamic characteristics that are investigated in this contribution. The paper is devoted to analysis of geometrically linear vibrations of Rayleigh and Timoshenko beams with cross-sections and material properties periodically varying along the longitudinal axis. The period of inhomogeneity is assumed to be sufficiently small when compared to the beam length. Equations of motion in both beam theories under consideration have highly-oscillating coefficients. In order to derive the averaged model equations with constant coefficients for vibrations, the tolerance averaging approach is applied. The method of averaging differential operators with rapidly varying coefficients is applied to obtain averaged governing equations with constant coefficients. An assumed tolerance and indiscernibility relations and the definition of slowly varying function found the applied technique. Numerical results from the tolerance Rayleigh and Timoshenko beam model equations are compared.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.