The aim of this study was to use a two-marker assay for the detection of breast cancer cells circulating in patients' blood. We have applied a PCR-based methodology to follow up the possibility of the development of metastatic disease in stage I and II patients who had undergone curative surgery. Since the number of circulating cancer cells in peripheral blood is very low, the technique for their detection needs to be not only highly sensitive, but also very specific. The reverse transcriptase-polymerase chain reaction (RT-PCR) technique may improve the sensitivity of breast cancer cell detection up to only a few cells per one million. The principle of the RT-PCR assay is to amplify a messenger RNA characteristic for breast epithelial cells in a blood sample. Since we do not expect such cells to be circulating in peripheral blood of healthy subjects, detection of the characteristic mRNA should indicate the presence of circulating breast cancer cells. We analyzed the usefulness of three mRNA markers: cytokeratin 19 (CK19), mammaglobin (hMAM) and β subunit of human chorionic gonadotropin (β-hCG) for this test. Blood samples (112) were obtained from 55 patients, in stages I and II, with or without metastasis to regional lymph nodes (N0 or N1). We found that a two-marker assay increases the sensitivity of detection of breast cancer cells in comparison with a single-marker one. Combination of two tumor-specific mRNA markers, hMAM/CK19 or β-hCG/CK19, allowed the detection of circulating breast cancer cells in 65% of N1 patients and 38% of N0 patients. By comparison, the combination hMAM/β-hCG allowed the detection of circulating breast cancer cells in the blood of 68% of N1 patients and 46% of N0 patients. Addition of the third marker did not significantly increase the detection sensitivity.
Hereditary predisposition to breast cancer determined in large part by loss of function mutations in one of two genes BRCA1 and BRCA2. Besides BRCA1 and BRCA2 other genes are also likely to be involved in hereditary predisposition to breast cancer. TopBP1 protein is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Expression of TopBP1 gene at the mRNA level was analyzed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) in 94 samples of hereditary breast cancer. Analysis of TopBP1 mRNA level showed that expression of TopBP1 is significantly downregulated in poorly differentiated breast cancer (grade III according Bloom-Richardson system (P<0.05).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this study was to analyze the molecular mechanism of inositol hexaphosphate (InsP6) action through which it may inhibit proliferation of colon cancer cells and cell cycle progression. A kinetic study of p53 and p21WAF1 mRNA increase was performed on human colon cancer HT-29 cells after treatment with 1, 5 and 10 mM InsP6 for 6, 12, 24 and 48 h. Real-time-QPCR based on TaqMan methodology was applied to analyze quantitatively the transcript levels of these genes. The transcription of β-actin and GAPDH genes was assessed in parallel to select the control gene with least variability. The 2-ΔΔCt method was used to analyze the relative changes in gene transcription. InsP6 stimulated p53 and p21WAF1 expression at the mRNA level, with the highest increase in p21WAF1 mRNA occurring at 24 h, i.e., following the highest increase in p53 mRNA observed at 12 h. Based on these studies it may be concluded that the ability of InsP6 to arrest the cell cycle may be mediated by the transcriptional up-regulation of the p53-responsive p21WAF1 gene.
Introduction and aim. Brucellosis is a zoonotic disease. Experimental clinical and laboratory diagnosis is still facing problems in identifying the organism. The present study will diagnose a Brucella infection in camel blood in Qatar using serological assays. Isolation and identification were performed on a camel blood sample. Brucella in bacterial isolates was determined by real-time polymerase chain reaction (RT-PCR) as a gold standard test. Material and methods. A total of 220 samples, 200 random serum samples, and 20 EDTA blood samples were selected among the above-mentioned random samples, and 20 serum samples from camel handlers were collected from Al Shahaniya province, Qatar. The Rose Bengal test (RBT), buffered antigen plate agglutination test (BAPAT), and enzyme linked immunosorbent assay (cELISA) for the monoclonal antibody in serum samples were performed using commercially available kits. For the molecular detection of Brucella, conventional PCR and real-time PCR (GPS kit) were used for the genus-specific insertion sequence IS711. Brucella melitensis (MICROBOSS Hightech GmbH kit) was used to identify subspecies. Results. The results identified by vitek2 compact (30%) showed B. melitensis in 6 samples out of 20 isolates. Both conventional (66.67%) and RT-PCR (83.33%) analyses supported this, demonstrating the presence of Brucella. These tests also showed that Brucella species were present in Rose Bengal 182/200 (91%), BAPAT 182/200 (91%), and cELISA (90%) 180/200 in camel serum. Conclusion. To conclude, the prevalence of brucellosis in dromedary camels is higher in this region, and as a matter of urgency, measures should be taken to control the disease.
Podczas trwania pandemii COVID-19 wiele osób przejawia obawy zakażenia się wirusem SARS-CoV-2 w placówkach handlowych. Głównymi drogami zakażeń wirusem SARS-CoV-2 są wydalane przez zarażone osoby krople i aerozole, które osiadając na powierzchniach przedmiotów mogą stanowić, poprzez kontakt z nimi, źródło retransmisji wirusa. Przeprowadzone badania miały na celu ocenę obecności wirusa SARS-CoV-2 na powierzchniach produktów i przedmiotów często dotykanych przez klientów i personel w sklepach spożywczych. Badania wykonane techniką RTLAMP i potwierdzone techniką RT-PCR wykazały, że materiał genetyczny wirusa SARS-CoV-2 był obecny w wymazach pobranych w czasie trwania czwartej fali zakażeń COVID-19 w Polsce w placówkach mhandlowych oferujących żywność.
EN
During the COVID-19 pandemic, many people are afraid of contracting the SARS-CoV-2 virus at retail outlets. The main routes of infection with the SARS-CoV-2 virus are droplets and aerosols excreted by infected people, which settling on the surfaces of objects, through contact with them can be a source of virus retransmission. The research carried out were aimed at assessing the presence of the SARS-CoV-2 virus on the surfaces of products and objects often touched by customers and staff in grocery stores. Research performed with the RT-LAMP technique and confirmed with the RT-PCR technique showed that the genetic material of the SARS-CoV-2 virus was present in swabs collected during the fourth wave of COVID-19 infections in Poland in grocery stores.