Wykonano symulacje rozkładu porowatości efektywnej i miąższości dla złoża Różańsko wykorzystując metody geostatystyczne oraz metodę sztucznych sieci neuronowych. Zastosowano metodę regresji wielokrotnej do estymacji parametrów złożowych (porowatości i miąższości) oraz do stworzenia ich przestrzennych rozkładów, wygenerowanych na podstawie interpretacji wyników pomiarowych sejsmiki 3D, wykonanych na obszarze badanego obiektu. Z drugiej strony zastosowano do obliczeń sieć neuronową typu perceptron wielowarstwowy z algorytmem genetycznym. Stworzono mapy rozkładów symulowanych parametrów i porównano otrzymane wyniki. Stwierdzono, że obie metody dają poprawne wyniki, przy czym metoda sztucznych sieci neuronowych (ANN), będąc metodą szybszą i mniej pracochłonną stawia większe wymagania bazie danych, ze względu na tendencje do wygładzania symulowanych wyników.
EN
Numerical models of Różańsko reservoir were performed using geostatistical and artificial neural network (ANN) methods. The multiple regression method were applied as well for estimations of reservoir parameters extracted from well-log functions as for creation of space distribution of reservoir parameters depending on distributions of appropriate seismic attributes generated on the base of 3-D image of the investigated object. From the other side artificial neural network (ANN) with genetic algorithm were applied. Sketches of porosity and thickness distribution were obtained as a final result. It was showed that both methods give similar results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.