The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, the impact of maximum flow uncertainty on flood hazard zone is analyzed. Two factors are taken into account: (1) the method for determination of maximum flows and (2) the limited length of the data series available for calculations. The importance of this problem is a consequence of the implementation of the EU Flood Directive in all EU member states. The factors mentioned seem to be among the most important elements responsible for potential uncertainty and inaccuracy of the developed flood hazard maps. Two methods are analyzed, namely the quantiles method and the maximum likelihood method. The maximum flows are estimated for the Wronki gauge station located in the reach of the Warta river. This simple river system is located in the central part of Poland. The length of the available data is 44 years. Hence, the series of the lengths 40, 30 and 20 years are tested and compared with reference calculations for 44 years. The hydrodynamic model HECRAS is used to calculate water surface profiles in steady state flow. The Python scripting language is applied for automation of HEC-RAS calculations and processing of final results in the form of inundation maps. The number of trials for each factor is not huge to keep the presented methodology useful in practice. The chosen measure of uncertainty is the range of variability for maximum flow values as well as inundation areas. The estimated values stressed the great importance of the factors analyzed for the uncertainty of the maximum flows as well as inundation areas. The impact of the data series length on the maximum flows is straightforward; a shorter data series gives a wider range of variability. However, the dependencies between other factors are more complex. Hence, the application of methodology based on the simulation and GIS data processing for assessment of this problem seems to be quite a good approach.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.