Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Poisson kernel
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
We give sharp global estimates for the Green function, Martin kernel and Poisson kernel in Lipschitz domains for symmetric α-stable processes. We give some applications of the estimates.
EN
Using a probabilistic technique we obtain upper and lower estimates for the Poisson kernels of the second order differential operators on a homogeneous manifold of negative curvature. Our results improve estimates obtained in the paper [5]. Moreover, for the noncoercive operator we proved the boundary Harnack inequality which turned out to be the same as in the coercive case.
3
Content available remote Hitting hyperbolic half-space
75%
EN
Let (…) be the n-dimensional hyperbolic Brownian motion with drift, that is a diffusion on the real hyperbolic space (…) having the Laplace-Beltrami operator with drift as its generator. We prove the reflection principle for (…) which enables us to study the process (…) killed when exiting the hyperbolic half space, that is the set (…). We provide formulae, uniform estimates and describe asymptotic behavior of the Green function and the Poisson kernel of D for the process (…). Finally, we derive formula for the (…) Poisson kernel of the set D.
4
Content available remote Bessel potentials, Green functions and exponential functionals on half-spaces
75%
EN
The purpose of the paper is to provide precise estimates for the Green function corresponding to the operator (I—Δ)α/2, 0 <α< 2. The potential theory of this operator is based on Bessel potentials Jα=(I—Δ) -α/2. In probabilistic terms it corresponds to a subprobabilistic process obtained from the so-called relativistic a-stable process. We are interested in the theory of the killed process when exiting a fixed half-space. The crucial role in our research is played by (recently found) an explicit form of the Green function of a half-space. We also examine properties of some exponential functionals corresponding to the operator (I—Δ) α/2.
5
Content available remote Horocyclic Radon transform on Damek-Ricci space
63%
EN
We study the horocyclic Radon transform, defined in [5], of Damek-Ricci space. This transform R is obtained by integration over an orbitals family of NA space. We establish a Plancherel's formula for this transform. In particular, we characterize the range of horocyclic Radon transform of certain subspace of [L^2] ( NA, dx). The operators R and R*, where R* is the dual Radon transform of R, are inverted by a differential operator with constant coefficients (if dim NA is odd), or an integro-differential operator (if dim NA is even). The inversion formulas obtained are similar to the inversion formulas in symmetric space of noncompact type (see [7], [18], [19]). Also, we prove a radial Paley-Wiener-Schwartz's theorem for Damek-Ricci space.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.