Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Partitions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom 10
|
nr 2
788-796
EN
Compositions and partitions of positive integers are often studied in separate frameworks where partitions are given by q-series generating functions and compositions exhibiting specific patterns are designated by generating functions for these patterns. Here, we view compositions as alternating sequences of weakly increasing and strictly decreasing partitions (i.e. alternating blocks). We obtain generating functions for the number of such partitions in terms of the size of the composition, the number of parts and the total number of “valleys” and “peaks”. From this, we find the total number of “peaks” and “valleys” in the composition of n which have the mentioned pattern. We also obtain the generating function for compositions which split into just two partition blocks. Finally, we obtain the two generating functions for compositions of n that start either with a weakly increasing partition or a strictly decreasing partition.
2
100%
|
|
tom 11
|
nr 22
PL
Artykuł nie zawiera streszczenia
EN
Motivated by applications in linear dynamical systems, the author studies q^n(f), where q is the operator f●(d/dx) and qn is its n-th iteration. q^n(f) is a polynomial F(f(0),f(1),...,f(n)) in the derivatives f(0)=f,...,f(n) of f with integer coefficients. Special attention is paid to determining the coefficients of F. The author presents algorithms for computing the coefficients and also shows that the sum of all coefficients of F equals n!. The paper ends with some remarks on the number of coefficients of F, which is related to the number-theoretic unrestricted partition function.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.