In this article, a novel concept is introduced by using both unsupervised and supervised learning. For unsupervised learning, the problem of fuzzy clustering in microarray data as a multiobjective optimization is used, which simultaneously optimizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clustering solutions. In this regards, a new multiobjective differential evolution based fuzzy clustering technique has been proposed. Subsequently, for supervised learning, a fuzzy majority voting scheme along with support vector machine is used to integrate the clustering information from all the solutions in the resultant Pareto-optimal set. The performances of the proposed clustering techniques have been demonstrated on five publicly available benchmark microarray data sets. A detail comparison has been carried out with multiobjective genetic algorithm based fuzzy clustering, multiobjective differential evolution based fuzzy clustering, single objective versions of differential evolution and genetic algorithm based fuzzy clustering as well as well known fuzzy c-means algorithm. While using support vector machine, comparative studies of the use of four different kernel functions are also reported. Statistical significance test has been done to establish the statistical superiority of the proposed multiobjective clustering approach. Finally, biological significance test has been carried out using a web based gene annotation tool to show that the proposed integrated technique is able to produce biologically relevant clusters of coexpressed genes.
W pracy przedstawiono teorię stabilnego dopasowania algorytmu odroczonej akceptacji (AOA) oraz algorytmy TTC i TTCC wraz z ich zastosowaniami do np. kojarzenia uczelni i studentów, domów i właścicieli czy dawców i biorców nerek do przeszczepu. Dzięki tym algorytmom można projektować tzw. rynki kojarzenia, dla których optymalna alokacja dóbr jest możliwa bez wykorzystania mechanizmów finansowych charakterystycznych dla rynków towarowych. Omówiono właściwości algorytmów kojarzenia, m.in. ich stabilność, Pareto optymalność i odporność na manipulacje, oraz cechy algorytmu TTCC, dzięki którym krzyżowe transplantacje można zastąpić łańcuchowymi, co dzięki osiągnięciu głębszego rynku, pozwala na bardziej optymalne wykorzystanie nerek do przeszczepu.
EN
The paper presents the theory of stable allocations of deferred acceptance algorithms (DAA), as well as TTC and TTCC algorithms together with their applications to matching, e.g. universities and students, homes and owners or donors and transplant patients. These algorithms design so-called matching markets, for which optimal allocation of goods is possible without the use of financial mechanisms specific to commodity markets. Discussed are properties of matching algorithms: their stability, Pareto’s optimality and resistance to manipulation. The TTCC algorithm allows to replace the pairwise exchange by the chain exchange transplantations, which due to the thickness of market improve match quality of transplanted kidneys.