A novel type of silicon material, p-type quasi-mono wafer, has been produced using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ) and float-zone (FZ) materials. This study evaluates the application of an advanced solar cell process that features a novel method of ion-implantation and backside rounding process on p-type quasi-mono silicon wafer. The ion implantation process substituted for thermal POCl3 diffusion leads to better Rsheet uniformity (<3 %). After screen-printing, the interface of Al and back surface field (BSF) layers was analyzed for the as prepared samples and the samples etched to three different depth. SEM showed that increased etch depth improved both BSF layer and Al–Si layer. The IQE result also showed that the samples with higher etching depth had better performance at long wavelength. The I – V cell tester showed that the sample with the etching depth of 6 μm ± 0.1 μm had the greatest efficiency, due to the highest Voc and Isc. The solar cell fabricated in this innovative process on 156 × 156mm p-type quasi-mono silicon wafer achieved 18.82 % efficiency.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono wyniki prac nad formowaniem tlenku termicznego na powierzchni w ˛eglika krzemu oraz wpływ wygrzewania w atmosferze zawieraj ˛acej fosfor lub azot na jakos´c mi ˛ ´ edzypowierzchni dielektryk/półprzewodnik/ w układzie SiO2/4H-SiC. Stwierdzono, ze wygrzewanie ˙ dwuetapowe w atmosferze POCl3 w temperaturze 1000°C, oraz kolejno NO w temperaturze 1100°C pozwala zredukowac g˛ ´ estos´c stanów pułapkowych ´ do poziomu ok. 2×1011 cm−2 przy kraw ˛edzi pasma przewodnictwa.
EN
The aim of this studies was investigation of the influence of oxidation and annealing processes in the phosphorus or nitrogen containing atmosphere on the quality of the dielectric/semiconductor interface in the Ti/SiO2/4H-SiC metal-oxide-semicondutor structure. It was found that twostage annealing, in POCl3-containing atmosphere at the temperature of 1000°C, and successively in NO-containing atmosphere at the temperature of 1100°C allows to reduce the density of interface trap to the level of approx. 2×1011cm−2 near the conduction band edge.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.