Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  OpenFOAM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents results of the free surface flow around ship hull on two different types of computational grid. Each type of mentioned grid has its own advantages and disadvantages in particular cases, mostly in one phase simulation. Omitting cases with capitation, there is no free surface involved in one phase simulation. Multiphase simulations are crucial in the ship design process and optimization. Recreating free surface on the triangular mesh causes difficulties, in contrast to the hexahedral meshes, where calculated surface is more aligned to the physical border of the fluids. In this paper, results from the triangular mesh were compared to results from hexahedral mesh. Conclusions about triangular meshes in two phase simulation are presented. The computational fluid dynamic toolbox OpenFOAM is used to perform calculations of the total resistance of work boat in calm water.
EN
The aluminothermic reaction is a type of self-propagating high-temperature synthesis to produce high quality metals and metal oxides en route. The main use of the aluminothermic reaction is in the field of railway welding. The multiphase flow of steel, slag and air in differently shaped crucibles has been numerically investigated in this work with the volume-of-fluid method. The simulations were carried out with the multiphase solver of the open source toolbox OpenFOAM. To validate the numerical results of the three-dimensional simulations, an experiment was carried out to investigate the discharge of a water-oil system from the crucible. A comparison to a numerical 3D simulation showed reasonable accurate results. It can be said that the solver is capable of predicting the point of the oil penetration of the water phase in the experiment.
EN
This paper investigates a simplified and fast numerical model of a solar updraft tower. The model applies a novel approach to the calculation of heat transfer from the outside environment to a collector in the tower. Complex calculations of heat transfer are replaced by a properly defined heat flux boundary condition- the value of which depends on the time of day and meteorological conditions. The model was validated by experimental results from a pilot plant in Manzanares, Spain. Calculations were performed in order to investigate the effects of the chimney’s height and the density of the solar radiation. Both of these dependencies were found to be logarithmic. The requirements for a 250 kW plant in various locations with different meteorological conditions were analyzed.
|
|
tom Vol. 27
161--168
EN
This paper presents the development of post-processing aeroacoustics utility for OpenFOAM, based on Ffowcs Williams-Hawkings aeroacoustic analogy. Although the FH-W analogy is well known for almost 50 years, there is a lack of open-source software which is using it, hence decision to perform this implementation. This is the veryfirst version of utility, so only one formulation of FH-W were implemented. Presented application allows to compute far-field acoustic pressure from near field CFD solution. Validation is based on NASA Tandem Cylinder Case. Comparison of the results from simulation show fairly good agreement with experimental data.
EN
In the presented work Egorov’s approach (adding a source term to the ω-equation in the k-ω model, which mimics the damping of turbulence close to a solid wall) was implemented in on the subclass of shear stress transport models. Hence, turbulence damping is available for all shear stress transport type models, including hybrid models that are based on the ω-equation. It is shown that turbulence damping improves the prediction of the axial velocity profile not only for Reynolds-averaged Navier–Stokes simulation but also for detached eddy simulation and delayed detached eddy simulation models. Furthermore, it leads to a more realistic estimation of the pressure drop and, hence, to a more correct prediction of the liquid level. In this paper, simulation results for four different turbulence models are presented and validated by comparison with experimental data. Furthermore, the influence of the magnitude of the damping factor on the pressure drop in the channel is investigated for a variety of different gas-to-liquid flow rate ratios. These investigations show that higher gas-to-liquid flow rate ratios require higher damping factors to correctly predict the pressure drop. In the end, advice is formulated on how an appropriate damping factor can be determined for a specific test case.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.