Przeprowadzone w ramach niniejszej pracy badania doświadczalne oraz ich analiza miały na celu porównanie dwóch gatunków miedzi różniących się między sobą zawartością tlenu oraz metodą ich wytwarzania. Do badań stosowano materiał uzyskany w linii ContirodŽ (miedź gat. ETP) oraz w linii Upcast (miedź gat. OFE). O ile w przypadku walcówki z miedzi ETP mamy do czynienia z materiałem o ponad 99 % umocnieniu odkształceniowym realizowanym na gorąco, co gwarantuje znakomitą jej odkształcalność, o tyle miedź beztlenowa uzyskana w linii Upcast z uwagi na strukturę odlewniczą generować może dodatkowe problemy w procesach dalszego jej przetwórstwa.
EN
The experimental research carried out in this work as well as their analysis aimed at comparing the two types of copper which differ only in the oxygen content and production method. On one hand the material obtained from ContirodŽ and Upcast line. In the case of wire rod from ETP copper we deal with a material with more than 99 % of deformation hardening implemented hot, what guarantees its extraordinary deformability. The oxygen-free copper obtained from UpcastŽ method has unfavourable, from the deformability point of view, casting structure what may generate additional problems during the processes of further processing in the cold working processes.
O jakości wyrobów otrzymywanych metodami przeróbki plastycznej decyduje nie tylko skład chemiczny materiałów wsadowych, którymi dla wyrobów z miedzi przeznaczonej na cele elektryczne są: tradycyjna walcówka uzyskiwana głównie z miedzi gatunku ETP oraz wsad odlewany z miedzi beztlenowej, ale również parametry technologii ich wytwarzania. W procesie odlewania są to m.in. prędkość odlewania i wydatek wody chłodzącej krystalizator. Istnieje możliwość sterowania tymi parametrami, tak aby efekt zmiany był widoczny w strukturze i właściwościach odlewów. W pracy dokonano określenia wpływu parametrów procesu odlewania, a w szczególności prędkości odlewania na strukturę materiału - ilości, rozmiarów oraz kształtu ziaren. Badaniom poddano druty miedziane o średnicach od 2 do 8 mm otrzymane z materiałów wsadowych odlewanych z różnymi prędkościami. Przedstawiono szereg aplikacji wyrobów z miedzi beztlenowej otrzymanych z materiałów odlewanych zarówno w warunkach laboratoryjnych (gdzie prędkość odlewania materiału wsadowego była mniejsza od 0,5 m/min.), jak i w warunkach przemysłowych metodą Upcast (gdzie prędkość odlewania wzrasta od 0,5 do 4,0 m/min.). Dokonano oceny struktury miedzi wysokiej czystości chemicznej OFC (o zawartości tlenu ok. 3 ppm mas.) w porównaniu do miedzi ETP (o zawartości tlenu około 200 ppm mas.).
EN
About the quality of goods receiving through the methods of plastic working decide not only chemical composition of metallic charge. With reference to this segment of goods which are made of cooper, used for electrical purposes, can be included traditional wire rod achieving mainly from the ETP grade copper, batch casting from oxygen-free copper and also parameters of accepted technology of fabrication. In casting process there are, among other things, casting speed and water flow of crystallizer. There are possibility of regulation of those parameters, but the influence of such change should be seen in the structure of casting and those features which mainly depend on it. In the description there were made characteristics of influence of casting process of parameters, in particularly speed of casting on shaping of the structure of the material from point of view of quantity, size and shape of grains. In particularly the examinations were made on wires with diameter from 2 to 8 mm achieved from batch materials casting different speed. There were presented a lot of applications from oxygen-free copper which are possible to achieved from the materials casting both in the laboratory conditions (casting speed of batch materials lower than 0,5m/min.), and in the industrial conditions using the Upcast method (casting speed increase from 0.5 to 4.0 m/min.). There were made a characteristic of the structure of the copper with high chemical clearness in OFC class (oxygen concentration on about 3 ppm mass) and as a reference point of copper of ETP class (oxygen concentration on about 200 ppm mass).
A mixed pseudo-orthogonal frequency coding (Mixed-POFC) structure is proposed as a new spreadspectrum technique in this paper, which employs frequency and time diversity to enhance tag properties and balances the spectrum utilization and code diversity. The coding method of SAW RFID tags in this paper uses Mixed-POFC with multi-track chip arrangements. The cross-correlation and auto correlation of Mixed-POFC and POFC are calculated to demonstrate the reduced overlap between the adjacent center frequencies with the Mixed-POFC method. The center frequency of the IDT and Bragg reflectors is calculated by a coupling of modes (COM) module. The combination of the calculation results of the Bragg reflectors shows that compared with a 7-chip POFC, the coding number of a 7-chip Mixed-POFC is increased from 120 to 144 with the same fractional bandwidth of 12%. To demonstrate the validity of Mixed-POFC, finite element analysis (FEA) technology is used to analyze the frequency characteristics of Mixed-POFC chips. The maximum error between designed frequencies and simulation frequencies is only 1.7%, which verifies that the Mixed-POFC method is feasible.
Dokonująca się w ostatnich latach na świecie ekspansja przemysłu metalurgicznego ściśle związanego z hutnictwem, a także rozwój metod doświadczalnych fizyki ciała stałego determinują wejście na rynek elektroniczny i elektrotechnicznych nowych gatunków miedzi o coraz to wyższym poziomie własności użytkowych. Jednym z takich materiałów jest miedź beztlenowa OFE (Oxygen Free Electronic Copper), która z uwagi na brak obecności tlenków (CuO, Cu2O) stwarza nowe możliwości kształtowania własności fizycznych, technologicznych i eksploatacyjnych - niezbędnych do zastosowań w różnych gałęziach przemysłu elektrotechnicznego. Ponadto z uwagi na proces produkcji wykonywany techniką ciągłego odlewania materiał charakteryzuje się specjalnie ukształtowaną strukturą ziaren umożliwiającą podniesienie przewodności elektrycznej. W przypadku aplikacji miedzi beztlenowej w konstrukcjach kablowych (m.in.: przewody teleinformatyczne przesyłu danych, dźwięku i obrazu) odgrywa to kluczowe znaczenie, ponieważ pozwala na istotne oszczędności materiałowe i ekonomiczne w porównaniu do tradycyjnie stosowanej na cele elektryczne miedzi tlenowej ETP (Electrolytic Tough Pitch Copper). Przykładem przemysłowej technologii wytwarzania miedzi beztlenowej jest metoda UPCAST, która uruchomiona została w Zakładzie Przetwórczym Huty Miedzi Cedynia w Orsku. Zastosowane parametry procesu technologicznego (m.in.: prędkość odlewania, ilość wody chłodzącej krystalizator) decydują o jakości wyrobów tj. drutów uzyskiwanych metodami przeróbki plastycznej zarówno na zimno, jak i na gorąco. Oprócz tego istotną rolę odgrywa jakość materiałów wsadowych do procesu ciągłego topienia, którymi są katody gatunku Cu-CATH-1 (LME GradeA) charakteryzujące się wysoką czystością chemiczną (suma pierwiastków zanieczyszczeń na poziomie maks. 25 ppm wag.). Powtarzalność własności fizykochemicznych i technologicznych, a także stanu strukturalnego uzyskanej miedzi wysokiej czystości chemicznej zależy zatem w głównej mierze od stabilności termicznej linii produkcyjnej i jest decydująca o przebiegu dalszych procesów jej przetwarzania. W artykule dokonano charakterystyki miedzi beztlenowej przeznaczonej do techniki kablowej i jej analizy w aspekcie normalizacyjnym (polskie i światowe normy przedmiotowe z obszaru oznaczeń, wymagań i metod badawczych miedzi), teoretycznym (wymagania względem miedzi stawiane przez współczesną elektronikę, proces ciągnienia materiału na druty i mikrodruty, odporność cieplną i własności elektryczne), materiałowym i technologicznym (materiały wsadowe i druty przeznaczone na cele elektryczne), a także konstrukcyjnym i aplikacyjnym (przykłady rozwiązań i charakterystyka zaawansowanych technologicznie wyrobów z miedzi OFE). Takie podejście do zagadnienia pozwala na interdyscyplinarne poznanie i zrozumienie omawianej tematyki, a jednocześnie umożliwia jej głębsze osadzenie w istniejącym stanie wiedzy.
EN
Making in recent years the expansion of the world metallurgical industry which is closely connected with non-ferrous metals and the development of experimental methods of solid state physics emerging on the electrical and electrotechnical market of the new grade copper with increasingly higher level of property. One such material is oxygen free copper OFE (Oxygen Free Electronic Copper), which is due to the lack of oxides (CuO, Cu2O) creates new opportunities to develop physical, technological and operational properties - needed for applications in various branches of the electrical industry. Moreover, because of the production process of continuous casting the material is characterized by a specially shaped grain structure which can increase the electrical conductivity. For applications in the construction of oxygen-free copper cables (e.g.: data communication cables) it is very important because it allows for significant savings in materials and cost-effective compared to the traditionally used copper for electrical purposes ETP (Electrolytic Tough Pitch Copper). An example of the industrial technology of producing oxygen free copper is UPCAST method, which was launched at the processing plant Cedynia Copper Smelter in Orsk. Applied parameters of producing process (such as casting speed, amount and temperature upon entry/exit from the crystallizer) determine the quality of the products obtained by methods such as cold and hot working. In addition, the important role played by the quality of input materials for the continuous melting process, which are cathode grade Cu-CATH-1 (LME Grade-A) with high chemical purity (the sum of the elements at the level of pollution up to 25 ppm wt.). Repeatability of physicochemical and technological properties, as well as the structural state of high purity copper obtained chemical therefore depends mainly on the thermal stability of the production line and is deciding on the course of further processes, it is processed. The subject of this paper is the characterization of the oxygen free copper dedicated for cables technology. This was analyzed in terms of standardization (characteristics of Polish and global standards of labeling, requirements and research methods of copper), theory (copper requirements as needed by modern electronics, drawing process of materials into wire and microwire, heat resistance and electrical properties), materials and technology (input materials and wire for electrical purposes, ETP copper, oxygen-free copper and functionally excellent copper production technologies), construction and application (principles for designing the geometry and properties of audio-video cables, solution examples and characteristics of advanced technology for products from OFE copper). This kind of approach allow for interdisciplinary recognition and understanding of the subject while at the same time set itself deeper in existing knowledge.