Podjęto próbę prześledzenia możliwości podziału treści zdjęcia, stosowanego w klasyfikacji obiektowej, na dwie podstawowe klasy związane z „niskimi” i „wysokimi” wartościami tekstury w funkcji rożnej rozdzielczości zdjęć. Na podstawie kanału panchromatycznego zdjęcia KOMPSAT-2 o rozdzielczości 1 m przygotowano zestaw danych o rozdzielczości 1, 2, 4, 8, 16, 32 i 64 m. Następnie przetworzono je wybranymi funkcjami tekstury, które wykorzystywane są w toku klasyfikacji obiektowej: filtr Sobel, filtr Laplacian, suma filtrów Sigma, przekształcenie PanBF oraz funkcje Haralick’a: korelacja, homogeniczność i entropia. Na ich podstawie wykonano analizę rozróżnialności czterech podstawowych klas pokrycia terenu: tereny zabudowane, lasy, pola uprawne i woda. Dla każdej rozdzielczości i przekształcenia obliczono odległość Bhattacharya oraz odległość Jeffries-Matusita (J-M). Założono, że dwie klasy są dobrze rozróżnialne jeżeli wartość J-M jest większa od 1.7. Uzyskane wyniki w postaci odległości J-M przedstawione są w tabelach 1-7. W przypadku wszystkich siedmiu przekształceń najlepsze wyniki rozróżnialności klas zaobserwowano na zdjęciach o największej rozdzielczości. Natomiast wyraźne pogorszenie rozróżnialności nastąpiło w przypadku zdjęć o rozdzielczości 8 m i mniejszej. Zdecydowanie najlepsze wyniki uzyskano na podstawie przekształceń wykonanych filtrem Laplacian, a następnie Sobel, Sigma oraz przekształceniem PanBF. W porównaniu z nimi przydatność funkcji Haralick’a do podziału treści zdjęcia na dwie klasy tekstury okazała się zdecydowanie mniejsza. Przedstawione wyniki znajdują praktyczne zastosowanie w pracach nad doborem odpowiednich algorytmów klasyfikacyjnych zdjęć satelitarnych o bardzo wysokiej, wysokiej a także średniej rozdzielczości.
EN
An attempt was made to trace the possibility of division of the content of satellite images into two basic classes associated with the "low" and "high" values of the texture. This classification approach is applied during object-oriented classification and results are dependent on spatial resolution. On the basis of panchromatic channel of KOMPSAT-2 image of 1m resolution a data set with a resolution of 1, 2, 4, 8, 16, 32 and 64 m were prepared. Then images were processed using selected texture functions: Sobel, Laplacian and Sigma filters, transformation PanBF as well as Haralick functions: correlation, homogeneity and entropy. On the basis of texture images an analysis of discrimination of four basic land cover classes has been done: built-up areas, forests, agriculture areas and water. These classes were selected because built-up areas and forest belong to “high” texture and remaining two are usually represented by “low” values of texture. For each texture image form using different functions and spatial resolution, Bhattacharya distance and next Jeffries-Matusita (J-M) distance between land cover classes were calculated. Results are presented in tables 1, 2, 3, 4, 5, 6 and 7. They also include J-M distance between “low” and “high” texture. It was assumed that two classes are well seperated if the value of J-M distance is over 1.7. In the case of all seven texture transformations the best results of class discrimination were observed for images with the highest resolution. Distinct deterioration of discrimination between “low” and “high” texture took place in the case of images with a resolution of 8 m or less. By far the highest J-M values were obtained on the basis of Laplacian filter and next using Sigma filter, PanBF and the Sobel filter. In comparison usefulness of the Haralick function has proved much less. The presented results could be practically applied in the work on classification algorithms of very high, high and medium resolution satellite images.
Aktualność map glebowo-rolniczych w Polsce sięga najczęściej lat sześćdziesiątych poprzedniego wieku, stąd wymagają one nie tylko konwersji z formy analogowej (papierowej) do cyfrowej, ale przede wszystkim weryfikacji treści w stosunku do rzeczywistych klas pokrycia i użytkowania terenu. Rozwój miast, wsi, dróg i innych inwestycji infrastrukturalnych, jaki nastąpił w minionych 50 latach oraz nasilenie się w ostatniej dekadzie procesów socjoekonomicznych skutkujących porzucaniem upraw rolnych i zajmowania tych terenów przez lasy, spowodował dużą dezaktualizację treści geometrycznej mapy glebowo-rolniczej. Przeprowadzenie weryfikacji treści geometrycznej mapy glebowo-rolniczej dla skali województwa małopolskiego wymagało zastosowania obiektowej klasyfikacji (OBIA, ang. Object Based Image Analysis) aktualnych zobrazowań teledetekcyjnych. Proces OBIA realizowano w oprogramowaniu eCognition Developer 8.64 (Trimble GeoSpatial). Należało go możliwie daleko zautomatyzować ze względu na dużą powierzchnię opracowania (ok. 15000 km2). Otrzymane wyniki skontrolowano na podstawie kilkuset powierzchni referencyjnych (wektoryzacja ekranowa dokonana przez operatora). Analizy przestrzenne GIS aktualizujące przebieg poligonów mapy glebowo-rolniczej o nowe powstałe obiekty zrealizowano w trybie wsadowym (Model Builder, Esri). Uzyskane wyniki wykazały, iż największe zmiany, tj. przyrost powierzchni (procentowo) zanotowano w przypadku klas: „Las” (Ls; +8.2%) oraz „Tereny zabudowane” (Tz; +6.3%), przy jednoczesnym ubytku wszystkich kompleksów (ID 1÷13) wykorzystywanych pod uprawy rolne o -10.5% (z czego -4.9% w rejonach górskich). Ubytek trwałych użytków zielonych (1z, 2z oraz 3z) na zaktualizowanej mapie glebowej oceniona na około (-4.2%). Zastosowane algorytmy weryfikacyjne oraz aktualizacyjne pozwalają stwierdzić, iż klasyfikacja obiektowa OBIA aktualnych zobrazowań teledetekcyjnych (satelitarnych i lotniczych) w połączeniu z daleko zautomatyzowanymi analizami przestrzennymi GIS może być wykorzystywana w procesie aktualizacji mapy glebowo-rolniczej.
EN
The analogue soil maps (paper sheets; scale 1:5000) were made in Poland most likely in the 60-ties of XX century. Today, they need not only conversion from analogue form to digital (raster or vector) format but also quick and objective map revision. Soil maps become outdated and they don't represent actual land use or land cover (LULC). Rapid growth of cities and the country side development as well as infrastructure constructions have to be included in up-dated soil map. During the last 50 years in Małopolska Voivodeship, many hectares of arable land were abandoned and changed in natural way (succession) in to the class forest. In year 2010 the Marshal office of Małopolska Voivodeship decide to convert the archive of analogue soil map to shape file with connected database. In 2011 another project was started with main goal of up-date of the soil map (about 15 000 km2). The special work-flow of geoinformation technologies was used for fulfill this goal. Object Based Image Analysis (OBIA) meets the criteria for fast and accurate Land Use & Land Cover (LULC) classification method of the RapidEye (from years 2010/2011) high resolution satellite images. Application of this object based classification method, together with GIS analysis ensures very high degree of work automation. The results obtained shows, that the most changes in a land cover were observed in urban areas (Tz; +6.3%) and forests (Ls; + 8.2%). The area of all other agricultural used soil complexes decreased in the same time about -10.5% (in the mountainous areas approx. -4.9%). The class pastures and meadows also decrease during the last 50 years about -4.2%. This project demonstrates success story of using the modern GIS techniques to verify and update soil map of Małopolska Voivodeship based on the OBIA of RapidEye satellite imaginary and aerial orthophotomaps (RGB).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Głównym celem prezentowanych badań było opracowanie zautomatyzowanej metody kartowania klas pokrycia terenu występujących w przestrzeni miejskiej, na drodze integracji komplementarnych technologii, tj.: wysokorozdzielczych zobrazowań satelitarnych (GeoEye-1) oraz chmur punktów lotniczego skanowania laserowego (ALS). Cel cząstkowy polegał również na porównaniu dokładności klasyfikacji OBIA zbiorowisk roślinnych w oparciu o różne zestawy danych wejściowych, w stopniu możliwie maksymalnie zautomatyzowanym, bez stosowania jakichkolwiek pól treningowych. Jednocześnie autorzy postawili sobie za cel przedstawienie statystyk przestrzennych opisujących zieleń miejską w wymiarze 3D i zaproponowali szersze wykorzystanie danych ALS.
EN
The paper presents first results of advanced research concerning the use of integrated airborne laser scanning data and high resolution satellite images for the purpose of urban land cover mapping, particularly vegetation. Object-based image analysis was used for data processing, without any training areas and with three different approaches: A - only ALS data; B - based on GeoEye-1 satellite image only; C - based on both integrated datasets. Using integrated point clouds with spectral information stored in GeoEye-1 bands resulted in the best classification outcome (Kappa = 0.83), allowing detection of all classes that were the subject of analysis. Vertical structure assessment possibilities with the use of point cloud data were also shown in the paper.
Klasyfikacja obiektowa (OBIA, ang. Object Based Image Analysis) jest nowatorską metodą analizy zobrazowań teledetekcyjnych, w której homogeniczne obiekty (segmenty), na które podzielony został obraz (za pomocą specyficznych algorytmów) poddawane są klasyfikacji. Dotychczasowe projekty wykazały, iż OBIA przeprowadzana na wysokorozdzielczych i wielospektralnych lotniczych ortofotomapach cyfrowych, wspierana modelami wysokościowymi, prowadzi do uzyskania bardzo dokładnych wyników. Stosunkowo niewiele prac koncentruje się na określeniu wpływu produktów pochodnych chmury punktów lotniczego skanowania laserowego (ang. Airborne Laser Scanning), takich jak wartość: odchylenia standardowego wysokości, gęstości punktów czy intensywności odbicia, na poprawę wyników klasyfikacji OBIA. W prezentowanej pracy poddano ocenie wzmocnienie procesu klasyfikacji OBIA danymi ALS na podstawie dwóch transektów badawczych („A” oraz „B”) o powierzchni 3 km2, położonych w okolicach Włocławka. Celem końcowym procesu analizy OBIA było uzyskanie aktualnej mapy klas pokrycia terenu. W opracowaniu wykorzystano lotnicze ortofotomapy cyfrowe oraz dane z lotniczego skaningu laserowego, pozyskane na przełomie sierpnia I września 2010 roku. Na podstawie punktów danych ALS wygenerowano warstwy pochodne takie jak: liczba odbić, intensywność, odchylenie standardowe, jak również wygenerowano znormalizowany Numeryczny Modelu Powierzchni Terenu (zNMPT). W wariancie pierwszym „I” wykorzystano dane uzyskane wyłącznie w nalocie fotogrametrycznym, tj. wielospektralne ortofotomapy lotnicze (kamera Vexcel) oraz indeksy roślinności (w tym NDVI i in.). Wariant drugi prac ”II” zakładał wykorzystanie dodatkowo danych z lotniczego skaningu laserowego. Określona dokładność klasyfikacji OBIA wykonanej w oparciu o cyfrową ortofotomapę lotniczą wyniosła 91.6% dla transektu badawczego „A” oraz 93.1% dla transektu „B”. Użycie danych ALS spowodowało podniesienie dokładności ogólnej do poziomu 95.0% („A”) oraz 96.9% („B”). Praca wykazała, iż zastosowanie danych ALS podnosi dokładność klasyfikacji segmentów o bardzo zbliżonych właściwościach spektralnych (np. rozróżnienie powierzchni dużych, płaskich dachów budynków od parkingów czy klas roślinności niskiej od średniej i wysokiej. Wprowadzenie warstw pochodnych ALS do procesu segmentacji poprawia także kształt powstających obiektów a tym samym klas końcowych. Analiza „surowych” danych ALS w postaci plików w formacie LAS otwiera dodatkowe możliwości, których nie daje wykorzystywanie rastrowych warstw takich jak zNMPT. Pojawiająca się w nowej wersji oprogramowania eCognition (TRIMBLE) możliwość operowania segmentami przestrzennymi jeszcze te możliwości klasyfikacji podnosi. Niewątpliwie sporym problemem w integracji informacji spektralnej (ortoobraz) oraz geometrycznej (ALS) jest efekt rzutu środkowego skutkujący przesunięciami radialnymi dla wysokich obiektów leżących w znacznej odległości od punktu głównego zdjęcia.
EN
Object Based Image Analysis (OBIA) is an innovative method of analyzing remote sensing data based not on the pixels, but on homogenous features (segments) generated by specific algorithms. OBIA based on high-resolution aerial orthophotography and powered by digital terrain models (nDSM) brings high accuracy analysis. Not many scientific papers brings implementation of ALS point cloud directly into OBIA image processing. Paper present study done on two test areas of approx. 3 km2, situated close to Wloclawek, representing different land use classes (transect “A” – urban area; transect “B” – rural and forest landscape). Geodata (digital aerial orthophotographs and Airborne Laser Scanning data) were captured almost at the same time (September 2010). Different raster layers were created from *. LAS file, like: intensity, number of returns, normalized elevation (nDSM). Two version (I and II) of OBIA classification were performed. First version (I) based only on aerial orthophotographs and different coefficients (like NDVI). Second variant of OBIA (wariant II) based additionally on ALS data. Total accuracy of variant I was 94.1% (transect “A”) and 92.6% (transect “B”). OBIA classification powered by ALS data provide to increase of the results up to 96.9% (transect “A”) and 95.0% (transect “B”) as well. Classification of objects with similar type of surface properties (like buildings and bare soil) was much better using ALS information. The ALS data improve also the shape of objects, that there are more realistic. Data fusion in OBIA processing brings new capabilities,. These capabilities are bigger thanks to processing based on 3-dimensional segments. The results of analysis would be more accurate, when orthoimages (“true ortho”) would be used, instead of standard orthophotographs. The running ISOK project in Poland will bring soon a huge data set (approx. 150 TB) of ALS and photogrammetry connected products. This situation requires suitable software to analyze it fast and accurate on the full automatic way. The OBIA classification seems to be a solution for such challenge.
Wraz z rozwojem teledetekcji i wysokorozdzielczych obrazów satelitarnych istotnym wyzwaniem dla współczesnych badań stało się zautomatyzowanie procesu klasyfikacji pozyskiwanych danych. Jedną z bardzo szybko rozwijających się metod automatycznej klasyfikacji jest analiza obiektowa obrazu (OBIA, ang. Object Based Image Analysis). Celem pracy było wykorzystanie metody OBIA w przygotowaniu aktualnej mapy pokrycia terenu będącej ważnym elementem dokumentacji niezbędnej dla studium uwarunkowań budowy nowej hydroelektrowni na środkowym odcinku Wisły. W pracy wykorzystano wysokorozdzielcze zobrazowania satelitarne RapidEye (5 kanałów spektralnych, w tym dwa w zakresie NIR) pokrywające obszar około 5.300 km2 oraz oprogramowanie eCognition (TRIMBLE Geospatial) a także warstwy informacyjne GIS. W wyniku przeprowadzonych analiz uzyskano mapę pokrycia terenu reprezentowaną przez 29 klas. Największą powierzchnię terenu badań zajmują obszary użytkowane rolniczo (59.5%, z czego 35.5% grunty orne) oraz lasy (29.1%, z czego 21.4% drzewostany iglaste), co świadczy o charakterze tej jednostki fizjograficznej. Analiza dokładności uzyskanych wyników wykazała, iż metoda OBIA daje bardzo dobre rezultaty (współczynnik Kappa równy 0.8) w daleko zautomatyzowanym procesie generowania aktualny map pokrycia terenu dla obszarów centralnej Polski na podstawie obrazów satelitarnych RapidEye.
EN
Parallel with the development of remote sensing and high resolution satellite images major challenge for modern research has become almost to automate the classification of the data obtained. One of the most rapidly developing methods for automatic classification is object-oriented image analysis (OBIA, Object Based Image Analysis). The aim of the present study was to use the OBIA method to create the current land cover map which is part of the documentation necessary for new water power-station on the middle part of Vistula river. In this paper the RapidEye satellite images (5 spectral bands, two in the NIR range) covering an area of about 5 300 km2 and eCognition Developer (TRIMBLE) software were used. As a result of the analysis and land cover map was obtained, represented by 29 classes. The largest area is covered by agricultural land (59.5%; arable land – 35.52%) and forests (29.1%; mainly coniferous 21.4%), reflecting the rural – forestry character of the area. Analysis of the accuracy of the obtained results has shown that the OBIA method gives quite good results (Kappa coefficient equal to 0.8) for land cover mapping of central part of Poland based on the RapidEye imageries.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Trendy panujące w teledetekcji wskazują jednoznacznie na kierunek stosowania całkowicie samodzielnych metod automatycznej klasyfikacji dużych mozaik ortofotomap lotniczych i satelitarnych. Zautomatyzowany proces pozyskiwania i zarządzania dużymi zbiorami danych teledetekcyjnych został już w zasadzie osiągnięty, a jego logiczną kontynuacją jest w pełni automatyczna interpretacja obrazu. Wybrane klasy CLC2000 (Corine Land Cover) takie jak: woda, las, obszary antropogenicznego pochodzenia czy tereny rolnicze posiadają bardzo specyficzną charakterystykę będącą kombinacją własciwości spektralnych i tekstury. Stąd też klasy te mogą być poddawane sekwencyjnemu procesowi klasyfikacji (zapisanego w tzw. protokole programu eCognition; Definiens) zwanego OBIA (obiektowa analiza obrazu; synonim - klasyfikacja obiektowa), który może wskazać tzw. "kandydatów" dla powierzchni treningowych i testowych w obszarze analizowanego obrazu. W zaprezentowanej metodzie, selekcja pól treningowych i testowych tradycyjnie dokonywana przez operatora, została znacząco zredukowana bądź też nawet całkowicie zaniechana. Te subiektywne zazwyczaj decyzje, które obszary nadają się, a które nie jako wzorce to klasyfikacji, zastąpiono hierarchicznym procesem (protokół eCognition) ich wyboru. Zapewnia to opisywanej metodzie OBIA większą obiektywność. Sukces działania w pełni automatycznych procedur analizy obrazu można osiągnąć w przypadku klas pokrycia terenu o unikatowej charakterystyce spektralnej i teksturze (ang. fingerprint). Systemy eksperckie wymuszają przebieg określonych procesów takich jak: od poziomu Danych do Informacji oraz od poziomu Informacji do Wiedzy. Pomimo takiego przebiegu od Danych do Informacji, systemy IACS/LPIS bazują w swej dużej części na informacjach składanych przez rolników. Bezpośrednie powiązanie danych satelitarnych z systemami GIS może przynosić duże profity dzięki wdrażaniu dostępnych już inteligentnych metod przetwarzania obrazu. Prezentowana praca demonstruje najnowocze.niejsze metody (eCognition ver.5) i procedury aktualizacji warstw GIS (LPIS) oparte na automatycznym generowaniu informacji na podstawie wysokorozdzielczych obrazów satelitarnych QuickBird. Artykuł pokazuje możliwości zastosowania automatycznych procesów do ilościowej analizy dynamiki klas pokrycia terenu, w tym szczególnie, naturalnej sukcesji leśnej jaka najczęściej zachodzi na opuszczonych gruntach rolnych w południowej części Polski. Zastosowana klasyfikacja OBIA oraz analizy GIS wykazały istnienie 69,28 ha obszarów o charakterze sukcesyjnym zajmujących 16,2% terenu badań. Zautomatyzowane pozyskiwanie informacji zawartych w wysokorozdzielczych obrazach satelitarnych staje się koniecznością w kontekście podejmowania najlepszych decyzji uwzględniających dynamikę naturalnych procesów zachodzących w krajobrazie rolniczym.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.