Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Navier-Lamé equation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper introduces a parametric integral equation system (PIES) for solving 2D boundary problems defined on connected polygonal domains described by the Navier-Lame equation. Parametric linear functions were applied in the PIES to define analytically the polygonal subregions' interfaces. Only corner points and additional extreme points on the interface between the connected subregions are posed to practically define a polygonal domain. An important advantage of this approach is that the number of such points is independent of the area of identically shaped domains due to the elimination of traditional elements from modeling, the number of those elements being dependent on the domain's surface area. In order to test the reliability and effectiveness of the proposed method, test examples are included in which areas of displacements and stresses are analyzed in each subregion.
|
|
tom T. 15, nr 46
127--133
PL
Celem niniejszej pracy jest zbadanie wpływu liczby oraz sposobu rozmieszenia punktów kolokacji na dokładność i stabilność rozwiązań uzyskiwanych za pomocą parametrycznych układów równań całkowych (PURC). Analizę przeprowadzano dla brzegowych zagadnień 3D modelowanych równaniami Naviera-Lamégo z obszarami wielościennymi. Numeryczne rozwiązywanie PURC sprowadza się do rozwiązywania układów równań algebraicznych, które są zapisywane w punktach kolokacji. Liczba tych punktów oraz ich rozmieszczenie ma istotny wpływ na dokładność i stabilność rozwiązań.
EN
The purpose of this paper is to study the influence of number and arrangement of collocation points on the accuracy and stability obtained by parametric integral equation method (PIES). This analysis has been performed for 3D boundary value problems modeled by Navier-Lamé equations in polyhedral domains. Numerical solution of the PIES comes down to solving algebraic equations, written at collocation points. The number of these points and their arrangement have a significant impact on the accuracy and stability of the solutions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.