W artykule zaprezentowano metodę bezstratnej kompresji obrazów. Zastosowano w niej modelowanie z wykorzystujące nieliniową predykcję, która bazuje na sieciach neuronowych. Przedstawiono wyniki badań efektywności w zależności od liczby epok, wielkości okna uczącego oraz liczby neuronów w poszczególnych warstwach sieci. Ponadto dla tych parametrów dokonano też analizy czasu trwania procedury kodującej. Po dobraniu odpowiednich parametrów metodę uzupełniono o autorskie 3 kroki pozwalające zwiększyć efektywność proponowanej metody kompresji.
EN
In this paper, it is presented a method of lossless image compression that benefits from modeling with non-linear prediction based on neural networks. Effectiveness measures are provided with respect to the number of epochs, teaching window size and the neurons' number in each network layer. Moreover, for these parameters a time analysis of the encoding procedure is presented. After selecting the suitable parameters, the procedure has been extended by 3 steps resulting in effectiveness increase of the proposed compression method.
W artykule przedstawiono problematykę oraz ogólną zasadę działania filtrów adaptacyjnych. Przedstawione zostały także wyniki badań skuteczności działania filtrów z rodziny LMS (LMS, NLMS, oraz LMS i NLMS ze wstępną dekorelacją sygnału) z wykorzystaniem realnego zarejestrowanego sygnału radiokomunikacyjnego. Na potrzeby realizacji badań zostało wykonane programowe środowisko w którym zaimplementowano tą rodzinę algorytmów.
EN
The article presents the issues and the general operation principle of the adaptive filters. Article also includes test results of the effectiveness of the filters in the LMS family (LMS, NLMS and also LMS and NLMS with initial signal decorrelation) using record of real radio communications signal. For the implementation of research has been done programming environment that implements this family of algorithms.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For clean signal, noise cancellation techniques are explored day-by-day. At the user end the clean signal is highly essential for different purposes. In this authors have considered the bio-medical signal that is corrupted with impulsive noise. It is very important to separate from the signal, as its occurrence is sudden and often similar to the signal. The popular adaptive algorithms have been tested for cancellation of impulsive noise. Further most used Wilcoxon LMS is also verified for impulsive noise case. Finally it has been modified for the same purpose. The result found excellent in terms of less MSE, SNR improvement and faster convergence.
The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.