Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Metzler matrix
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The problem of determination of the set of Metzler matrices for given stable polynomials is formulated and partly solved. For stable polynomial of the second degree there exists a set of Metzler matrices if and only if the polynomial has only real negatives zeros. If the stable polynomial has only real negative zeros then the set of corresponding Metzler matrices is given by the set of lower or upper triangular matrices with diagonal entries equal to the negative real zeros and any nonnegative off-diagonal entries. Sufficient condition are establish for the existence of the set of Metzler matrices for stable polynomials with a real negative zeros and the complex conjugate zeros).
PL
W artykule sformułowani i częściowo rozwiązano problem wyznaczania zbioru macierzy Metzlera dla danych stabilnych wielomianów. Wykazano, ze dla stabilnych wielomianów stopnia drugiego istnieje zbiór macierzy Metzlera wtedy i tylko wtedy, gdy wielomian ten ma tylko ujemne pierwiastki rzeczywiste. Jeżeli stabilny wielomian dowolnego stopnia ma tylko pierwiastki rzeczywiste, to odpowiadający jemu zbiór macierzy Metzlera jest dany zbiorem macierzy dolno lub górno-trójkątnych z elementami na głównej przekątnej równych ujemnym zerom tego wielomianu oraz nieujemnymi elementami poza główną przekątną. Warunkiem koniecznym na to, aby dla danego stabilnego wielomianu istniał zbiór macierzy Metzlera jest posiadanie przez ten wielomian co najmniej dwóch zer przeczystych. Podano warunki dostateczne na istnienie zbioru macierzy Metzlera dla danych stabilnych wielomianów z ujemnymi zerami rzeczywistymi i zespolonymi parami sprzężonymi.
PL
Podano warunki dodatniości i stabilności liniowych układów ciągłych niecałkowitego rzędu. Sformułowano problem realizacji dodatnich stabilnych liniowych układów ciągłych niecałkowitego rzędu z macierzą systemową symetryczną Metzlera. Zaproponowano metodę sprowadzania macierzy stanu w postaci kanonicznej Frobeniusa do postaci symetrycznej stabilnej Metzlera. Metodę zobrazowano przykładem numerycznym.
EN
A dynamical system is called a fractional-order system if its state equations are given by fractional-order derivative of the state vector. Using that theory, more precise mathematical models of systems can be obtained. A dynamical system is called positive if its all inputs, outputs, state variables and initial conditions are nonnegative. Variety of models having positive behavior can be found in engineering, biology, economics etc. Conditions for positivity and stability of linear continuous-time fractional-order systems are presented in the paper. A positive stable realization problem for linear continuous-time fractional-order systems with symmetric system Metzler matrix is formulated. The method for finding the realization is given. The problem is solved and conditions for the existence of the realization are established. The paper is organized as follows. In Section 2 the conditions for internal positivity and stability of linear continuous-time fractional-order systems are given. This section also contains the formulation of the positive stable realization problem for linear continuous-time fractional-order systems with symmetric system Metzler matrix. In Section 3 the procedure for computation of the realization is given. An example illustrating the method proposed is presented in Section 4. Section 5 contains the concluding remarks.
3
Content available remote On spectrum of Metzler matrices
100%
|
|
tom R. 98, nr 12
121--123
EN
In the paper it was proven that spectrum of Metzler matrix must belong to a certain cone in the complex plane. The result is derived from the analytical characterization of spectra of positive matrices obtained by Karpelevich. Furthermore, it was shown that in case of 3x3 matrices this property yields also a sufficient condition that a set of numbers must satisfy in order to be spectrum of some Metzler matrix.
PL
W pracy wykazano, że widmo macierzy każdej Metzlera należy do pewnego stożka na płaszczyźnie zespolonej. Wykorzystano w tym celu analityczną charakteryzację widma macierzy dodatniej wyznaczoną przez Karpielewicza. Ponadto wykazano, że w przypadku macierzy 3x3 własność ta pozwala wyznaczyć również warunek wystarczający, który spełniać musi zbiór liczb zespolonych, aby był widmem pewnej macierzy Metzlera.
|
|
tom Vol. 69, nr 4
art. no. e137731
EN
The cyclicity of the state matrices of positive linear electrical circuits with the chain structure is considered. Two classes of positive linear electrical circuits with the chain structure and cyclic Metzler state matrices are analyzed. Some new properties of these classes of positive electrical circuits are established. The results are extended to fractional linear electrical circuits.
|
|
tom Vol. 70, nr 1
art. no. e139955
EN
The positivity and cyclicity of descriptor linear electrical circuits with chain structure is considered. Two classes of descriptor linear electrical circuits are analyzed. Some new properties of these classes of electrical circuits are established. The results are extended to fractional descriptor linear electrical circuits.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.