The morphology and morphogenesis of a new Australian metopid ciliate, Lepidometopus platycephalus nov. gen., nov. spec., were studied using live observation, various silver impregnation methods, scanning electron microscopy, and morphometry. The new genus is outstanding in having epicortical scales (lepidosomes) and a strongly flattened and distinctly projecting preoral dome. Diagnostic features of L. platycephalus include a small, reniform body carrying an elongated caudal cilium, about 11 ciliary rows, and an adoral zone composed of an average of 11 polykinetids. The morphogenesis of L. platycephalus matches data from other metopids in that (1) the body is drastically re-shaped, (2) the parental oral structures are reorganized but do not contribute to the daughter oral ciliature, (3) the opisthe’s adoral polykinetids originate pleurotelokinetally, (4) the opisthe’s paroral membrane is formed via re-arrangement of the posterior portion of the first two perizonal rows, and (5) the opisthe’s perizonal stripe is made by three parental perizonal rows and two dorsolateral ciliary rows. The morphogenetic data corroborate phylogenetic analyses in that caenomorphids are only superficially similar to metopids; metopids and clevelandellids are closely related; and litostomateans are the best candidates for a sister group of the metopid-clevelandellid assemblage within the SAL superclade.