L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj − dk (a, b, c, d ∈ ℝ). We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations A ↦^S−1AS in which h ↦ ^h is an arbitrary involutive automorphism of the skew field of quaternions. We apply the obtained canonical form to the quaternion matrix equations AX −^X B = C and X − A^X B = C.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.