Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lyapunov methods
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Colored decision process Petri nets: modeling, analysis and stability
100%
|
|
nr 3
405-420
EN
In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A Markov decision process is utilized as a tool for trajectory planning via a utility function. The main point of the CDPPN is its ability to represent the mark-dynamic and trajectory-dynamic properties of a decision process. Within the mark-dynamic properties framework we show that CDPPN theoretic notions of equilibrium and stability are those of the CPN. In the trajectory-dynamic properties framework, we optimize the utility function used for trajectory planning in the CDPPN by a Lyapunov-like function, obtaining as a result new characterizations for final decision points (optimum point) and stability. Moreover, we show that CDPPN mark-dynamic and Lyapunov trajectory-dynamic properties of equilibrium, stability and final decision points converge under certain restrictions. We propose an algorithm for optimum trajectory planning that makes use of the graphical representation (CPN) and the utility function. Moreover, we consider some results and discuss possible directions for further research.
2
59%
|
2010
|
tom Vol. 20, no 2
349-366
EN
We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic properties, we show that the HDPPN theoretic notions of (local and global) equilibrium and stability are those of the DPPN. As a result in the trajectory-dynamic properties framework, we obtain equivalent characterizations of that of the DPPN for final decision points and stability. We show that the HDPPN mark-dynamic and trajectory-dynamic properties of equilibrium, stability and final decision points coincide under some restrictions. We propose an algorithm for optimum hierarchical trajectory planning. The hierarchical decomposition process is presented under a formal treatment and is illustrated with application examples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.