In this work, 1-D numerical modelling of petroleum generation and expulsion processes in the Upper Ordovician and Lower Silurian source rocks was carried out in over sixty wells along the SW margin of the East European Craton (EEC) in Poland. Lower Palaeozoic sediments were subjected to rapid burial in the Palaeozoic and then were uplifted in several phases, but with the predominance of the late Variscan tectonic inversion. The thermal maturity of organic matter in the Lower Palaeozoic strata indicates the advancement of the generation processes from the phase of low-temperature thermogenic processes in the NE part of the Baltic and Podlasie-Lublin basins to the overmature stage along the zone adjacent to the Teisseyre-Tornquist Zone (TTZ). The results of modelling of generation and expulsion show that these processes took place mainly in the Devonian and Carboniferous periods and in the westernmost part (along the TTZ), even in the latest Silurian. The hydrocarbon expulsion took place with a small - delay after generation. During the Mesozoic and Cainozoic, generation processes practically were not resumed or intensified. Nevertheless, it was found that zones with an increased shale gas potential can occur only in a relatively narrow belt on the SW slope of the EEC, parallel to the edge of the TTZ. The most promising seem to be Caradocian, Llandovery and the Wenlock between the Lębork IG-1 and Kościerzyna IG-1 wells in the Baltic Basin, and the Wenlock source rocks in the Podlasie-Lublin Basin between the Okuniew IG-1, Łopiennik IG-1 and Narol IG-1 wells. Most of the hydrocarbons were subjected to expulsion and possible migration. As a result, there was a large dispersion of the hydrocarbons generated. The chance of preservation of these hydrocarbons in the source rocks is small.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Dla lubelsko-podlaskiego, górnoneoproterozoiczno-dolnopaleozoicznego basenu sedymentacyjnego przeprowadzono analizę subsydencji (backstripping) oraz analizę facjalną jego osadowego wypełnienia. Wydzielono cztery główne, częściowo współwystępujące, etapy tektonicznej ewolucji basenu, o odmiennych mechanizmach subsydencji: (1) późnoneoproterozoiczny ryft (faza subsydencji synryftowej w reżimie ekstensyjnym), (2) przejście od fazy syn- do postryftowej na przełomie późnego neoproterozoiku III i wczesnego kambru, (3) wczesnokambryjsko-środkowoordowicki pasywny brzeg kontynentalny (faza postryftowej subsydencji termicznej) oraz (4) późnoordowicko-późnosylurskie fleksuralne uginanie krawędzi Baltiki. Synryftowe wypełnienie basenu stanowią kontynentalne wylewy bazaltowe oraz kontynentalne zlepieńce i arkozy, obocznie zastępowane przez mułowce. Wykształcenie facjalne tych utworów dopuszcza synsedymentacyjną aktywność ekstensyjnych uskoków. Synryftowe depocentra rozwijały się zarówno wzdłuż obecnej strefy szwu transeuropejskiego, jak i wzdłuż SW przedłużenia aulakogenu Orsza-Wołyń. Efektem tych procesów było powstanie węzła potrójnego, którego porzuconym ramieniem jest druga z powyżej wymienionych stref. Przejście do fazy postryftowej subsydencji termicznej wyznaczają: stopniowo wygasająca subsydencja, równoczesna z morską transgresją, generalnym zmniejszaniem się frakcji materiału klastycznego i obocznym ujednoliceniem facjalnym oraz rozszerzaniem się zasięgu basenu. Przyjęto, że kambryjsko-środkowoordowicki pasywny brzeg kontynentalny był związany z domniemanym basenem (oceanem?) Tornquista, powstałym na SW od Baltiki w efekcie rozpadu super-kontynentu Rodinii. W takim ujęciu obecna pozycja kadomskiego orogenu na blokach małopolskim i górnośląskim w stosunku do kratonu wschodnioeuropejskiego nie jest reprezentatywna dla neoproterozoiku III i kambru. Ze względu na brak niepodważalnych dowodów na obecność synryftowych deformacji ekstensyjnych uznano, iż możliwa jest interpretacja wyników backstrippingu alternatywna względem modelu litosferycznej, basenotwórczej ekstensji. W alternatywnym modelu dla późnoneoproterozoiczno-środkowoordowickiego okresu rozwoju basenu jako przeważający mechanizm subsydencji basenu przyjęto termiczne studzenie litosfery, będące następstwem jej pasywnego przegrzania w czasie aktywności wulkanicznej w neoproterozoiku III. Model ten, choć dopuszczalny dla basenu lubelsko-podlaskiego, nie tłumaczy jednak rozwoju górnoneoproterozoicznych, kambryjskich i ordowickich basenów SW skłonu kratonu wschodnioeuropejskiego, genetycznie powiązanych z basenem tu omawianym. Począwszy od późnego ordowiku obserwowany jest systematyczny wzrost tempa subsydencji w czasie, które osiąga maksymalne wartości w późnym sylurze. Dla tego przedziału czasu obserwowany jest również silny wzrost subsydencji z NE ku SW, tj. ku skłonowi kratonu wschodnioeuropejskiego. Generalny rozwój subsydencji omawianego basenu w sylurze jest charakterystyczny dla procesu fleksuralnego uginania litosfery, w tym wypadku SW krawędzi Baltiki.
EN
For the Neoproterozoic to Lower Palaeozoic Lublin-Podlasie sedimentary basin 1-D subsidence analysis was conducted by means ofbackstripping. This was performed for 14 boreholes, representative for the basin, and additionally was compared with the results of similar analysis applied further to the NW, i.e. for the Baltic Basin. To constraint tectonic model for the basin the results of backstripping were related to facies architecture of the basin-fill. Four partially overlapping main tectonic phases of the basin development were identified: (I) the late Neoproterozoic syn-rift, extension-elated subsidence, (2) transition from synrift to postrift phase at the latemost Neoproterozoic III to earlymost Early Cambrian, (3) post-rift thermal subsidence of the passive continental margin during the late Early Cambrian to Middle Ordovician and (4) Late Ordovician to late Silurian flexural bending. The rifting phase was initiated with deposition of continental coarse-grained sediments and emplacement of continental basalt. Subsequently the syn-rift basin was filled with continental conglomerates and arkoses, laterally replaced by mudstones, with facies development possibly controlled by extensional fault block activity. This passed up-section into shallow marine claystones and mudstones. Development of syn-rift depocentres was roughly coeval along Peri-Tornquist zone and SW prolongation ofOrsha-Volhyn zone, leading to development of triple-point SW of analysed area, with the second of the above zones being an abounded arm. Passage to post-rift thermal subsidence of the passive continental margin is indicated by subsequently ceasing subsidence, coeval with marine transgression, fining of clastic sediments and relative facies unification, as well as expansion of depocentres. The passive margin is related here to a suspected Tornquist basin (ocean?), developed to the SW of Baltica as a result of break-up of the super-continent Rodinia. This requires an assumption, that recent position of a Cadomian orogen, recognised on Małopolska and Brunovistulicum, with respect to Baltica is not representative for the Neoproterozoic III and Cambrian. Lack of definite evidences for syn-rift extensional deformations leads to an alternative interpretation of the backstripping results. Instead oflithospheric, active extension, leading to development of the sedimentary basin, in the alternative model it was assumed that the Neoproterozoic to Middle Ordovician evolution of the Lublin-Podlasie basin was exclusively a result of thermal sag, related to cooling of litho sphere. This would be a consequence of passive heating of the system due to volcanic activity in the Neoproterozoic III. This alternative model, even if suitable for the Lublin-Podlasie basin, is not capable to explain the upper Neoproterozoic, Cambrian and Ordovician development of sedimentary basins at the SW slope of Baltica, which are genetically related to the analysed area. Any compromise between cooling after passive heating and cooling after active lithospheric extension, with different proportions between the both, is possible. Since the Late Ordovician gradual increase in subsidence rate in time is observed, which reaches maximum in the late Silurian (Pridoli). Overall pattern of the Silurian subsidence, both spatial and 1-D, is typical for a mechanism of flexural bending oflithosphere. A common development of Caledonian foredeep basins along e.g. some of Baltica and Eastern and Western Avalonia margins, coeval with Silurian flexural bending, enhances discussing such model for Lublin-Podlasie basin. Nevertheless, comparison of development of the analysed area with Holly Cross Mountains one during the Silurian does not support a simple foredeep model.
Analysis of palaeothickness maps of the uppermost Vendian -Lower Cambrian and Middle Cambrian of the Baltic Syneclise has shown that thickness variability of those sediments was controlled by subsidence differentiation and palaeorelief of the buried crystalline basement. During the Late Cambrian-Tremadoc uplifting movements dominated with the exception of the westernmost part of the Baltic Syneclise which was undergoing subsidence. During the Ordovician the Jelgava Depression was the most prominent palaeotectonic element. It embraced the northeastern part of the analysed area. Since the Early Silurian times a distinct subsidence increase had taken place. During the Early Silurian this phenomenon was restricted to the peripheral part of the Pre-Vendian Platform. Later, on in the Late Silurian times this process embraced the whole analysed area.
PL
W ramach współpracy międzynarodowej geologów polskich, litewskich, łotewskich i rosyjskich opracowano serię map paleomiąższościowych najmłodszego wendu-starszego paleozoiku syneklizy bałtyckiej. Analiza tych map pozwala na prześledzenie ewolucji paleotektonicznej obszaru w badanym okresie. Paleomiąższości najwyższego wendu-kambru dolnego ilustruje fig. 2. Dolnokambryjski zalew morski wkroczył na dość zróżnicowane morfologicznie podłoże. Na obszarze Polski najwybitniejszą paleostrukturą jest tzw. wyniesienie Zaręb w części centralnej całkowicie pozbawione osadów kambru dolnego. Na obszarze Obwodu Kaliningradzkiego i Litwy rejestrowane są wąskie grzędy rozdzielone obniżeniami, których pochodzenie związane jest ze zróżnicowaną morfologią fundamentu krystalicznego. W kambrze środkowym zmienność miąższościowa jest silniejsza niż w kambrze dolnym. Na obszarze Polski najbardziej zróżnicowane miąższości obserwuje się na wschód od Wisły. W Obwodzie Kaliningradzkim i na Litwie podstawowe trendy zmian miąższościowych w kambrze środkowym są podobne jak w kambrze dolnym. Kolejny etap rozwoju paleotektonicznego reprezentowany jest przez kambr górny-tremadok dolny. Ciągła pokrywa osadów tego wieku zachowana jest jedynie w zachodniej części badanego obszaru, gdzie wyraźnie zarysowane jest paleotektoniczne obniżenie Ławicy Słupskiej o kierunku W-E. Na pozostałym obszarze osady tego wieku zachowane są jedynie lokalnie w postaci płatów erozyjnych i brak jest tam wystarczających podstaw przeprowadzenia rejonizacji paleotektonicznej. Kolejna etapy rozwoju paleotektonicznego to ordowik dolny i ordownik środkowy-górny. Analiza map paleomiąższościowych wykazuje iż najwybitniejszym elementem paleostrukturalnym było wtedy rozległe obniżenie jełgawskie obejmujące większość obszaru Łotwy i część Litwy oraz przyległy akwen Bałtyku. Natomiast strefa wyraźnie zredukowanych miąższości w brzeżnej części platformy prewendyjskiej w rejonie Kościerzyny nie stanowiła prawdopodobnie wyniesienia, lecz obszar, w którym subsydencja nie była kompensowana przez sedymentację. W etapie dolnosylurskim większość istniejących wcześniej. lokalnych elementów paleostrukturalnych uległa rozformowaniu lub znacznej modyfikacji. W zachodniej części obszaru wzdłuż krawędzi platformy prewendyjskiej formuje się wyraźna skarpa strukturalna Bornholmu-Słupska o wysokim gradiencie zmian miąższościowych. W tym też rejonie w sylurze górnym została zarejestrowana najsilniejsza subsydeneja, a zrekonstruowane paleomiąższości osadów osiągają 2500-3000 m. Jak się przypuszcza (R. Dadlez, 1994) u schyłku syluru, w pridoli, nastąpiła pewna przebudowa planu strukturalnego polegająca na przesunięciu centrum subsydencji ze skrajnej części platformy w głąb kratonu w kierunku wschodnim w rejon Zatoki Gdańskiej.
The clayey-muddy complex of the Ordovician and Silurian age in the Pomeranian Caledonides belt as well as the Cambrian, Ordovician and Silurian rocks at its foreland (the East European Craton) contain the same genetical type of the organic matter dominated by the syngenetic sapropelic material (oil-prone). The intensity and character of the thermal alterations in both stable organic matter mobile components show distinct analogies despite the different tectonic involvement of both regions. The reflectivity index of the vitrinite-like minerals shows an increase with a burial depth of the successive members of the Lower Palaeozoic. The local increase in thermal alteration of the organic matter is related to the zones of the increased tectonic activity. Assuming that the maximum burial depth of the studied sediments corresponds to their present depth, it can be concluded that the thermal palaeogradient for the Early Palaeozoic in the Pomeranian region was higher than the present-day one. The range of maximum palaeotemperatures which influenced the Lower Palaeozoic complex is very wide ranging from about 70 to 200°C in the Caledonian zone. The analysed deposits do not show a good quality as potential source rocks for hydrocarbon generation. Their low generation potential is probably caused by an earlier generation of a part of hydrocarbons.
PL
Badania petrograficzne i geochemiczne wykonane zostały na materii organicznej rozproszonej w utworach starszego paleozoiku po obu stronach strefy tektonicznej Teisseyre'a-Tornquista. Objęły one swym zasięgiem osady ordowiku i syluru pomorskiej części pasma kaledonidów oraz kambru, ordowiku i syluru na ich przedpolu, na obszarze kratonu wschodnioeuropejskiego. Mimo że materia organiczna jest czułym wskaźnikiem zmian fizykochemicznych, szczególnie termicznych, zachodzących w osadzie w czasie jego dia-i katagenezy, nie stwierdzono wyraźnych różnic w charakterze jej przemian na obu obszarach. Świadczy to o podobnym wpływie procesów tektonicznych związanych zarówno z kaledonidami, jak i młodszymi ruchami diastroficznymi na brzeżną strefę kaledonidów pomorskich oraz na ich przedpole na obszarze kratonu wschodnioeuropejskiego. Typ genetyczny materii organicznej zawartej w skałach starszego paleozoiku na całym obszarze badań jest reprezentowany przez syngenetyczny materiał sapropelowy oi!-prone. Zawartość materiału humusowego, głównie redeponowanego, wzrasta dopiero w osadach sylurskich. W całym profilu badanych osadów występują epigenetyczne węglowodory impregnujące skały, wypełniające przestrzenie porowe lub mikroszczeliny spękań. W kompleksie utworów starszego paleozoiku materia organiczna stała oraz związki labilne występują w zmiennej ilości, przy maksymalnej koncentracji nie przekraczającej 2,6% TOC oraz 0,33% bituminów. Poziomy macierzyste o zawartości powyżej 0,5% C(org). występują najliczniej na obszarze kratonu wschodnioeuropejskiego w iłowcach środkowego kambru, górnego ordowiku oraz lokalnie w całym profilu syluru. W brzeżnej strefie kaledonidów pomorskich jedynie pojedyncze poziomy łupków karadoku z otworu Jamno IG 2 oraz wenloku z otworu Klosnowo IG 1 wykazują cechy słabych skał macierzystych dla generacji ropy. Potencjał generacyjny poziomów potencjalnie macierzystych jest najprawdopodobniej obniżony przez wcześniejsze wygenerowanie części węglowodorów. Określone na podstawie wartości wskaźnika Ro stadia generacji węglowodorów, w rejonie położonym na południowy zachód od strefy Teisseyre'a-Tornquista (kaledonidy pomorskie), zmieniają się od wczesnej fazy generacji ropy po późną fazę generacji gazów (0,63-2,73% Ro), wskazując na paleotemperatury w zakresie 70-200°C. Na północny wschód od strefy T-T (kraton wschodnioeuropejski) stopień dojrzałości materii organicznej odpowiada głównej fazie generacji ropy po fazę generacji gazów (0,82-2,3% Ro), przy maksymalnych paleotemperaturach oddziałujących na osady kambru -syluru, rzędu 80-190°C. Stopień dojrzałości termicznej syngenetycznych bituminitów oraz macerałów witrynitopodobnych wzrasta generalnie z głębokością pogrążenia osadów. Wydaje się, iż najsilniejszy wpływ na charakter przemian materii organicznej miały warunki termiczne związane z maksymalnym pogrążeniem oraz wielkością paleogradientu termicznego. Lokalne anomalie termiczne związane są ze strefami tektonicznymi oraz działalnością wulkaniczną.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.