In this paper, an improved ridge type estimator is introduced to overcome the effect of multicollinearity in logistic regression. The proposed estimator is called a modified almost unbiased ridge logistic estimator. It is obtained by combining the ridge estimator and the almost unbiased ridge estimator. In order to asses the superiority of the proposed estimator over the existing estimators, theoretical comparisons based on the mean square error and the scalar mean square error criterion are presented. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimator with the existing ones. Finally, a real data example is provided to support the findings.
Fingerprints play an important role in public safety and criminal investigations such as: B. Legal Investigations, Law Enforcement, Cultural Access, and Social Security. It can also help to give people a comfortable and secure life. Various gender segregation strategies have been proposed. In this article, the fingerprint algorithm uses a variety of Naive Bayes classifiers, SVM, Logistics Regression and Random Forest which they use to obtain the best results of gender segregation, a new fingerprint method can be created by Naive Bayes classifier, SVM, Logistics Regression and The Random Forest used and compiled proposed from different divisions obtained the best possible division of results by Random Forest, with 98\% accuracy compared to Naive Bayes, SVM and Logistics Regression, based on Random. The forest is the most sensitive to gender segregation.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The main aim of this paper is development, software implementation and use of the alloys selection method for the design of biocompatible materials in medical production. It is based on the use of Ito decomposition and Logistic Regression. Design/methodology/approach: The technology of machine learning is used to solve the task. The developed classification method is based on the application of multiclass Logistic Regression. In order to reduce the probability of incorrect alloy identification, expansion of the input characteristics based on the Ito decomposition of the second order has been made. On the one hand, it increased the dimension of the input features space, and as a result, it increased the time for training procedure, but on the other, it increased the solution accuracy of the alloys selection task. The accuracy evaluation of the method was carried out using different criteria. In particular, the method accuracy was estimated based on the ratio of correctly classified titanium alloys samples to the test sample dimension. This measure was used to assess the classification accuracy in the training and test modes. For a more detailed analysis of the classification method results, two additional measures were further used: Precision and Recall. Their calculation was based on the constructed confusion matrix. This made it possible to assess the ability of the developed method to find the instances of each individual alloy as a whole, as well as the ability to distinguish instances of one class from representatives on the other. The combination of these indicators allowed to evaluate the classification task accuracy in the conditions of the imbalance dataset for each class of the investigated material separately. Findings: The simulation results confirmed the effectiveness of the use of machine learning tools to solve this task. High indicators of the method’s accuracy based on the experimental results were established. In particular, the overall accuracy of the method is 96.875%, and the average values of Precision and Recall for all four classes are 94% and 98% respectively. Expansion of each vector's features from the training dataset by using Ito decomposition increased the method accuracy by more than 33% compared to the basic Logistic Regression. Research limitations/implications: The Logistic Regression's training procedure, as well as the increase of the space size of the investigated alloy's input features by using Ito decomposition, imposes a number of limitations on the application of the method in tasks that depend on the duration of the work. Practical implications: The proposed machine learning approach foralloys selection allows reducing the time, material and human resources needed to investigate the titanium alloys properties. The developed method increases the accuracy of the selection alloys task compared to the four known methods, an average of 14.5%. It can be used to select materials with appropriate properties for the design of biocompatible medical products. Originality/value: A method and software product for the titanium alloys classification task using a supervised learning technique has been developed. For this aim, the method of Logistic Regression with expanding inputs based on the second-order Ito decomposition is used.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.