We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we discuss and present various results about acting and boundedness conditions of the autonomous Nemitskij operator on certain function spaces related to the space of all real valued Lipschitz (of bounded variation, absolutely continuous) functions defined on a compact interval of R. We obtain a result concerning the integrability of products of the form (…) and a generalized version of the chain rule for functions a.e differentiable, in the sense of Lebesgue. As an application, we get a generalization of a theorem due to V. I. Burenkov for the case of functions of bounded Riesz-p-variation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.