Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lipschitz continuity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this article we prove local interior and boundary Lipschitz continuity of the solutions of a general class of elliptic free boundary problems in divergence form.
2
Content available On lower Lipschitz continuity of minimal points
80%
|
|
nr 2
245-255
EN
In this paper we investigate the lower Lipschitz continuity of minimal points of an arbitrary set A depending upon a parameter u . Our results are formulated with the help of the modulus of minimality. The crucial requirement which allows us to derive sufficient conditions for lower Lipschitz continuity of minimal points is that the modulus of minimality is at least linear. The obtained results can be directly applied to stability analysis of vector optimization problems.
EN
We consider a direct approach to solving the mixedinteger nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach in the sense of the corresponding optimal values. The results are obtained by considering the discretized problem as a parametric mixed-integer nonlinear optimization problem in finite dimensions, where the step size for discretization of the dynamics is the parameter. In this setting, we prove the continuity of the optimal value function under a stability assumption for the integer feasible set and second-order conditions from nonlinear optimization. We address the necessity of the conditions on the example of pipe sizing problems for gas networks.
EN
This article deals with state constrained optimal control problem for semilinear elliptic equation in a domain Omega. The state constraint is lumped on the compactum X contained in/implied by Omega n and contains a functional parameter q in C(X ). It is shown that any minimizing approximate solution (m.a.s.) in the sense of J. Warga satisfies the pointwise maximum principle (the maximum principle for m.a.s.) if the problem is meaningful, i.e., the value of the problem is finite. It is also shown that a condition of Slater's type is sufficient for the normality in the so-called "linear-convex" problem, and the normality of the problem for some fixed value of the parameter q in C(X ) implies the Lipschitz continuity of its value function in a neighborhood of q. The paper contains illustrative examples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.