In the realm of metric spaces we show in ZF that: (1) Quasi separability (a metric space X = (X, d) is quasi separable iff X has a dense subset which is expressible as a countable union of finite sets) is the weakest property under which a limit point compact metric space is compact. (2) ω-quasi separability (a metric space X = (X, d) is ω-quasi separable iff X has a dense subset which is expressible as a countable union of countable sets) is a property under which a countably compact metric space is compact. (3) The statement “Every totally bounded metric space is separable” does not imply the countable choice axiom CAC.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.