Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  LIME
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Our study aimed to develop an explanatory method for predicting Coronary Artery Disease (CAD) classification using spect images. As we all know, deep neural networks usually consist of many layers connected to each other through interlocking network nodes. Even if we check the classes and describe their relationships, it is difficult to understand entirely how active neural networks make predictions. Therefore, deep learning is still considered a``Black box''. Existing XAI (eXplainable Artificial Intelligence) approach can provide insights into the inside of a Deep Learning model allowing for transparency and interpretation. Our previous research helps doctors diagnose the CAD of patients by developing deep learning models using a multi-stage transfer learning framework. The model achieved 0.955 accuracy, 0.932 AUC, 0.944 sensitivity, and 0.889 specificity, showing effective performance. Our dataset includes 218 SPECT images from 218 imported patients collected at 108 Hospital in Hanoi, Vietnam. In this paper, We propose an explainable Deep Learning framework using three popular XAI approaches: LIME, GradCam, and RISE. These XAI approaches are effective tools for interpreting the prediction of deep learning models. We evaluate the effectiveness of the interpretation by visualizing the explained regions and using improved deletion and insertion with a threshold limit suitable for Binary Classification. The experiment results show that our model effectively diagnoses CAD and provides medical interpretation. Furthermore, the proposed method for evaluating the deletion and insertion metrics is considered more efficient for binary classification than the traditional metrics.
2
94%
EN
Electronic Commerce (E-Commerce) has become one of the most significant consumer-facing tech industries in recent years. This industry has considerably enhanced people's lives by allowing them to shop online from the comfort of their own homes. Despite the fact that many people are accustomed to online shopping, e-commerce merchants are facing a significant problem, a high percentage of checkout abandonment. In this study, we have proposed an end-to-end Machine Learning (ML) system that will assist the merchant to minimize the rate of checkout abandonment with proper decision making and strategy. As a part of the system, we developed a robust machine learning model that predicts if someone will checkout the products added to the cart based on the customer's activity. Our system also provides the merchants with the opportunity to explore the underlying reasons for each single prediction output. This will indisputably help the online merchants in business growth and effective stock management.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.