The paper presents the problem of coupling the gas flow dynamics in pipelines with the thermodynamics of hydrogen solubility in steel for the estimation of the fracture toughness. In particular, the influence of hydrogen blended natural gas transmission on hydrogen solubility and, consequently, on fracture toughness is investigated with a focus on the L485ME low-alloy steel grade. Hydraulic simulations are conducted to obtain the pressure and temperature conditions in the pipeline. The hydrogen content is calculated from Sievert’s law and, as a consequence, the fracture toughness of the base metal and heat-affected zone is estimated. Experimental data is used to define hydrogen-assisted crack size propagation in steel as well as to a plane strain fracture toughness. The simulations are conducted for a real natural gas transmission system and compared against the threshold stress intensity factor. The results showed that the computed fracture toughness for the heat-affected zone significantly decreases for all natural gas and hydrogen blends. The applied methodology allows for identification of the hydrogen-induced embrittlement susceptibility of pipelines constructed from thermomechanically rolled tubes worldwide most commonly used for gas transmission networks in the last few decades.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present study, the L485ME low-alloy steel grade, widely used in the last few decades in the natural gas transmission pipelines, subjected to hydrogen was investigated with respect to material degradation. A fracture toughness parameter such as the calculated conditional stress intensity factor was compared to the threshold stress intensity factor for the plane strain hydrogen-assisted cracking derived from the experimental data. Based on macroscopic and microscopic evaluation and measurements, the hydrogen-assisted crack size propagation in steel specimens was compared to the subcritical crack growth. The hydrogen content in the tube wall for the base metal and heat-affected zone was estimated, whereas the pressure and temperature conditions in the pipeline were calculated from a non-isothermal transient gas flow model. The results were used to estimate the fracture toughness of the pipe wall material exposed to the hydrogen-blended natural gas.
PL
W niniejszej pracy została przebadana, pod kątem degradacji materiału na skutek działania wodoru, stal niskostopowa gatunku L485ME, szeroko stosowana w ostatnich dziesięcioleciach do budowy rurociągów przesyłowych gazu ziemnego. Parametr odporności na kruche pękanie, taki jak obliczeniowy warunkowy współczynnik intensywności naprężeń, porównano z granicznym współczynnikiem intensywności naprężeń dla wydłużenia płaskiego, który wyznaczono z danych doświadczalnych dla pękania wywołanego wodorem. Na podstawie oceny oraz pomiarów makroskopowych i mikroskopowych, porównano wspomaganą wodorem propagację wielkości podkrytycznego wzrostu pęknięć w próbkach stalowych. Oszacowana została zawartość wodoru w ściance rury dla metalu podstawowego oraz strefy wpływu ciepła. W oparciu o nieizotermiczny model przepływu gazu w stanie nieustalonym, obliczono warunki ciśnienia i temperatury w rurociągu. Uzyskane wyniki wykorzystano do oszacowania odporności na pękanie materiału ścianki rury poddanego działaniu gazu ziemnego z dodatkiem wodoru.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.