For certain generalized Bernstein operators {L n} we show that there exist no i, j ∈ {1, 2, 3,…}, i < j, such that the functions e i(x) = x i and e j (x) = x j are preserved by L n for each n = 1, 2,… But there exist infinitely many e i such that e 0(x) = 1 and e j (x) = x j are its fixed points.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we study a Korovkin type approximation theorem for positive linear operators on the space of all 2π-periodic and continuous functions on the whole real axis via A-statistical convergence.
In this paperwe will prove the Korovkin type theorem for modified Szász-Mirakyan operators via Astatistical convergence and the power summability method. Also we give the rate of the convergence related to the above summability methods, and in the last section, we give a kind of Voronovskaya type theorem for A-statistical convergence and Grüss-Voronovskaya type theorem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.