In this paper we obtain an extension of the classical Korovkin theorem in abstract modular spaces. Applications to some discrete and integral operators are discussed.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, using the concept of A-statistical convergence we prove a Korovkin type approximation theorem in multivariate modular function spaces. Furthermore, giving an example via bivariate operators of Kantorovich type, it is shown that our theorem is stronger than its classical case.
In this paper we obtain an extension of the classical Korovkin theorem in abstract modular spaces. Applications to some discrete and integral operators are discussed.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results with respect to an axiomatic convergence, including almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the corresponding classical ones.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.