W artykule porównano ceny energii w Unii Europejskiej, USA, Chinach i Japonii i podkreślono istotny wpływ tych różnic na konkurencyjność. Przedstawiono główne cele polityki UE zmierzające do osiągnięcia konkurencyjności przemysłu i efektywności energetycznej. Na podstawie opracowanego przez Komisję Europejską raportu o cenach energii i kosztach porównano ceny energii dla sektorów ceramiki budowlanej i płytek ceramicznych. Przedstawiono główne kwestie stanowiska Unii Ceramicznej w sprawie pakietu odnoszącego się do klimatu i energii 2030 opracowanego przez Komisję Europejską. (abstrakt oryginalny)
EN
The ceramics industry belongs to energy intensive industries, one third of production costs are costs of energy. The differences between energy prices in EU and USA, China and Japan were shown and their strong infl uence on competitiveness was stressed. The main targets of EU policies to achive industrial competitiveness and energy effi ciency has been presented. One the base of "Energy prices and costs report" prepared by EC the prices for energy in brick and roof tiles and wall and fl oor tiles sectors in Europe were compared. The main issues of Cerame Unie statement on 2030 climate and energy package were described. (original abstract)
To increase their competitive advantage in turbulent marketplaces, contemporary manufacturers must show determination in seeking ways to: fulfill buyer orders with quality merchandise; meet deadlines; handle unexpected production disruptions; and lower the total relevant expense. To tackle the abovementioned challenges, this study explores an economic manufacturing quantity (EMQ) model with machine failure, overtime, and rework/disposal of nonconforming items; the goal is to find the best fabrication uptime that minimizes total relevant expenses. Specifically, we consider a production unit with overtime capacity as an operational feature that is linked to higher unit and setup costs. Further, its EMQ-based process is subject to random nonconforming items and failure rates. Extra screening separates the reworkable nonconforming items from scrap, and the rework is executed at the end of each cycle of regular fabrication. The failures follow a Poisson distribution, and a machine repair task starts as soon as a failure occurs; the fabrication of the lot that was interrupted resumes after the repair has been carried out. A decision model is built to capture the characteristics of the problem. Mathematical and optimization processes help in determining the optimal fabrication uptime. A numerical example not only illustrates the applicability of the research outcomes, but also reveals a diverse set of information about the individual or joint influences of deviations in mean-time-to-failure, overtime factors, and rework/disposal ratios linked to nonconforming rates related to the optimal replenishment uptime, total operating expenses, and various cost contributors; this facilitates better decision making. (original abstract)
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.