The active role played by chemotactic current density of the migrating cells in order to overcome its diffusion current, leads to a spatially - non-homogeneous and time - presistent distribution of the cells. We show that independently of the initial attractant concentration, its quantity tends exponentially to the concentration of cells as the system approaches a steady state.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Keller-Segel chemotaxis model is described by a system of nonlinear partial differential equations: a convection diffusion equation for the cell density coupled with a reaction-diffusion equation for chemoattractant concentration. In this work, we study the phenomenon of Keller-Segel model coupled with Boussinesq equations. The main objective of this work is to study the global existence and uniqueness and boundedness of the weak solution for the problem, which is carried out by the Galerkin method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.