Purpose: This work investigates the use of the underwater explosion (UNDEX) for the free and plug assisted cup forming processes. Design/methodology/approach: A 3D finite element model is built to simulate the process of the UNDEX cup forming using ABAQUS finite element code. Johnson-Cook (JC) material plasticity model is used to represent strain rate sensitivity of the used materials. Johnson- Cook damage criterion is employed to detect the onset of damage in the cup forming process. Findings: Both relatively hard and soft plugs are considered and the effects of using different plug materials on cup profile, strains and the limiting drawing ratios are given. The onset of damage in this process is also indicated. The results suggest that a relatively hard plug can enhance the control of the cup shape and the uniformity of strain distribution leading to increased limiting drawing ratio. Research limitations/implications: This work suggests a methodology for the prediction of shape, different strain distribution, the limiting drawing ratio and the energy required for UNDEX cup forming process. Practical implications: This study could be useful in non-conventional high energy rate forming industry. Originality/value: The study reveals the possibility of producing flat-bottomed cup by the relatively hard plug assisted UNDEX forming technique.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.