The positronium imaging technique represents a potential enhancement of the PET imaging method. Its core principle involves employing a β+ radiation source that emits additional gamma (γ) quanta referred to as prompt gamma. Our aim is to evaluate the capability to differentiate between annihilation and prompt gamma emissions, a vital aspect of positronium imaging. For this purpose, the selected isotopes should enable high efficiency and purity in detecting both prompt gamma and annihilation gamma. The assessment of the efficiency in identifying prompt and annihilation photons for various isotopes, which are potentially superior candidates for β++ γ emitters, is conducted through toy Monte-Carlo simulation utilizing the cross-section formula for photon-electron scattering. In this article, we have performed calculations for efficiency and purity values across different isotopes under ideal conditions and examined how these values evolve as we incorporate the fractional energy resolution into the analysis. Ultimately, the primary goal is to determine the energy threshold that optimizes both efficiency and purity, striking a balance between accurately identifying and recording events of interest while minimizing contamination from undesired events.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Extracellular vesicles (EVs) are nano- and micro-sized double-layered membrane entities derived from most cell types and released into biological fluids. Biological properties (cell-uptake, biocompatibility), and chemical (composition, structure) or physical (size, density) characteristics make EVs a good candidate for drug delivery systems (DDS). Recent advances in the field of EVs (e.g., scaling-up production, purification) and developments of new imaging methods (total-body positron emission tomography [PET]) revealed benefits of radiolabeled EVs in diagnostic and interventional medicine as a potential DDs in theranostics.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We develop a positronium imaging method for the Jagiellonian PET (J-PET) scanners based on the timeof-flight maximum likelihood expectation maximisation (TOF MLEM). The system matrix elements are calculated on-the-fly for the coincidences comprising two annihilation and one de-excitation photons that originate from the ortho-positronium (o-Ps) decay. Using the Geant4 library, a Monte Carlo simulation was conducted for four cylindrical 22Na sources of β+ decay with diverse o-Ps mean lifetimes, placed symmetrically inside the two JPET prototypes. The estimated time differences between the annihilation and the positron emission were aggregated into histograms (one per voxel), updated by the weights of the activities reconstructed by TOF MLEM. The simulations were restricted to include only the o-Ps decays into back-to-back photons, allowing a linear fitting model to be employed for the estimation of the mean lifetime from each histogram built in the log scale. To suppress the noise, the exclusion of voxels with activity below 2% - 10% of the peak was studied. The estimated o-Ps mean lifetimes were consistent with the simulation and distributed quasi-uniformly at high MLEM iterations. The proposed positronium imaging technique can be further upgraded to include various correction factors, as well as be modified according to realistic o-Ps decay models.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Hybrid in-beam PET/Compton camera imaging currently shows a promising approach to use of the quasi-real-time range verification technique in proton therapy. This work aims to assess the capability of utilizing a configuration of the Jagiellonian-positron emission tomography (J-PET) scanner made of plastic scintillator strips, so as to serve as a Compton camera for proton beam range verification. This work reports the production yield results obtained from the GATE/Geant4 simulations, focusing on an energy spectrum (4.2-4.6) MeV of prompt gamma (PG) produced from a clinical proton beam impinging on a water phantom. To investigate the feasibility of J-PET as a Compton camera, a geometrical optimisation was performed. This optimisation was conducted by a point spread function (PSF) study of an isotropic 4.44 MeV gamma source. Realistic statistics of 4.44 MeV PGs obtained from the prior step were employed, simulating interactions with the detector. A sufficient number of detected photons was obtained for the source position reconstruction after performing a geometry optimisation for the proposed J-PET detector. Furthermore, it was demonstrated that more precise calculation of the total deposited energy of coincident events plays a key role in improving the image quality of source distribution determination. A reasonable spatial resolution of 6.5 mm FWHM along the actual proton beam direction was achieved for the first imaging tests. This preliminary study has shown notable potential in using the J-PET application for in-beam PET/Compton camera imaging at quasi-real-time proton range monitoring in future clinical use.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.