Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Inteligentne Systemy Grzewcze
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Stosowane obecnie w ciepłownictwie Inteligentne Systemy Grzewcze, których obsługa odbywa się za pomocą platform SCADA (ang. Supervisory Control and Data Acquisition), są źródłem wielkiej ilości danych pomiarowych. Bardzo często informacje w nich zawarte są tracone, ponieważ ich analiza stwarza problemy natury metodologicznej. W niniejszym artykule przedstawiono wyniki badań nad wykorzystaniem jednej z metod eksploracji danych (ang. Data Mining) do predykcji temperatury powietrza w 31 lokalach mieszkalnych budynku wielorodzinnego. W tym celu za pomocą Sztucznych Sieci Neuronowych (ang. Artificial Neural Networks - ANN) analizowano szeregi czasowe temperatury wewnętrznej oraz dobowych sum temperatury wewnętrznej w trakcie jednego sezonu grzewczego (październik-maj). Jakość utworzonych neuronowych modeli predykcji oceniano na podstawie wartości współczynników korelacji liniowej oraz ilorazu odchyleń standardowych pomiędzy danymi rzeczywistymi i prognozowanymi. Wykazano, że zaproponowana metoda może być stosowana jako narzędzie wspomagające naliczanie opłat za użytkowanie sieci grzewczej w przypadku krótkotrwałych awarii systemu monitoringu.
EN
Intelligent Heating Systems, operated by SCADA (Supervisory Control and Data Acquisition) that are used today in heating systems are a source of great amount of measurement data. Very often information contained therein is lost because data analysis creates problems of a methodological nature. This paper presents the results of research on the use of data mining methods to predict air temperature in 31 premises of a multi-family building. For this purpose, the time series of indoor temperature and daily sums of indoor temperature during one heating season (October-May) were analyzed using Artificial Neural Networks (ANN). The quality of neuron prediction models was assessed on the basis of values of linear correlation coefficients and the quotient of standard deviations between actual and predicted data. It has been shown that the proposed method can be used as a tool to support the calculation of heating fees in the case of short-term failures of the monitoring system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.