This paper presents high performance setup developed at the SolarLab to measure current-voltage (I–V) curves of solar cells. The core of a setup is a steady light solar simulator of class A, according to specifications of IEC 60904-9 and ASTM E927 standards. Available range of measurements enables us to characterise not only all kinds of silicon wafer-based solar cells but also thin film cells and minimodules. A lot of effort has been done to make a setup as a powerful tool for advanced research work. For that purpose, such options have been implemented as various algorithms for I–V curve translation to external conditions other than those recorded during measurement or several techniques to determine lumped series resistance of solar cells (in both cases procedures recommended by IEC 60891 standard have been included). Advanced numerical fitting algorithms allow to extract from I–V curves the parameters corresponding to either of three commonly used equivalent diode models of a solar cell. Using an independent microprocessor unit, the temperature of the measuring table may be controlled in the range 0–60 °C due to a system of four Peltier cells attached to its rear side. This allows for routine determination of thermal coefficients of basic cell parameters. The paper discusses also some of elemental random and nonrandom error sources that can be encountered during the standard I–V measurements of a solar cell. The test results of repeatability of measurements, problems related to probe configuration, and heating up of the cells during “light” measurements are presented showing that the developed system can be successfully used both for laboratory work and as a tester on a production line. The system meets all requirements of the IEC 60904-1, IEC 60904-3, and IEC 60904-9 standards.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Charakterystyka prądowo-napięciowa to podstawowa forma prezentacji parametrów elektrycznych ogniwa fotowoltaicznego. Wykres krzywej I-V modułu PV zmienia się w ciągu dnia w zależności od natężenia promieniowania słonecznego oraz temperatury modułu. Artykuł przedstawia pomiary krzywych I-V w warunkach oświetlenia sztucznego wykonanych autorskim urządzeniem. W skład układu pomiarowego oprócz urządzenia wchodził również komputer sterujący wraz z oprogramowaniem Arduino w celu kontroli procesu pomiaru oraz zapisu odczytu danych do pliku. Spośród różnych dostępnych metod pomiarowych do realizacji urządzenia wybrano metodę pojemnościową wykorzystującą proces ładowania kondensatora do zmiany rezystancji układu od zera do nieskończoności. Taka metoda pomiaru nie umożliwia odtworzenia krzywej od punktu zwarcia i wymaga ekstrapolacji wyników, natomiast wykorzystuje ona stosunkowo łatwy w konstrukcji układ elektroniczny a także nie jest ona kosztowna. Urządzenie mierzy napięcie poprzez wbudowany konwerter ADC porównując badane napięcie z napięciem referencyjnym oraz natężenie prądu w obwodzie wykorzystując czujnik natężenia oparty o efekt Halla. W pracy porównano rezultaty pomiarów dla dwóch różnych typów ogniw fotowoltaicznych: polikrystalicznego i monokrystalicznego ogniwa krzemowego. Otrzymane wyniki zaprezentowano w formie wykresów. Porównano na nich wyniki dla kilku pomiarów oraz wartości uśrednionych. Porównano obliczone wartości współczynnika wypełnienia, który określa stosunek mocy maksymalnej ogniwa rzeczywistego do mocy maksymalnej ogniwa idealnego z danymi podanymi przez producenta.
EN
Current and voltage characteristics is the basic form of presentation of the electrical parameters of the photovoltaic cell. Chart I-V curve of the module varies throughout the day depends on the intensity of solar radiation and temperature of module. The article presents measurements of I-V curves under artificial lighting made by selfdesigned device. The measurement system also included the control computer with Arduino software to control the process of measuring and recording the read data to the file. Among the various measuring methods was chosen a capacitive load method, which uses charging the capacitor to change the resistance from zero to infinity. This method of measurement cannot restore the curve from the short-circuit current point and requires extrapolation. The device measures the voltage via the integrated ADC when comparing measured voltage with a reference voltage and current in the circuit using the intensity sensor based on the Hall effect. The study compares the results of measurements for two different types of photovoltaic cells: polycrystalline and monocrystalline silicon cell. The results are presented in graphs and compared to the results of several measurements and average values.