Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HeLa cell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The physiological significance and metabolism of oligoadenylated and polyadenylated human mitochondrial mRNAs are not known to date. After study of eight mitochondrial transcripts (ND1, ND2, ND3, ND5, CO1, CO2, ATP6/8 and Cyt. b) we found a direct correlation between the half-lives of mitochondrial mRNAs and their steady-state levels. Investigation of the mt-mRNA decay after thiamphenicol treatment indicated that three transcripts (ND2, ND3 and Cyt. b) are significantly stabilized after inhibition of mitochondrial translation. Careful analysis one of them, ND3, showed that inaccurate processing of the H-strand RNA precursor may occasionally occur between the ND3 and tRNAArg locus leading to synthesis of ND3 mRNAs lacking the STOP codon. However, analysis of the oligo(A) fraction observed in case of the ND3 indicates that partially polyadenylated mRNAs are linked rather to the transcription process than to the translation-dependent deadenylation. Analysis of ND3 mRNA turnover in cells with siRNA-mediated knock-down of the mitochondrial poly(A) polymerase shows that strongly decreased polyadenylation does not markedly affect the decay of this transcript. We present a model where oligoadenylated mitochondrial transcripts are precursors of molecules containing full length poly(A) tails.
EN
The use of nucleotides and their analogs in the pharmacological studies of nucleo­tide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have ana­lyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main en­zymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like en­zymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5 -nucleo- tidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPγS) and phosphonate analogs of adenosine nucleotides (α,β-methylene-ATP and β,γ-methylene-ATP) in the cell cultures. Only ADPβS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed.
EN
Copper, an essential transient element, can be toxic to cells when present in excess. Altered copper homeostasis is involved in pathological events of many diseases. Human CUTA isoform2 is a member of cation tolerance protein (CutA1) family. In this study, we examined the effect of CUTA isoform2 overexpression on copper toxicity. It was shown that overexpressed CUTA isoform2 sensitized HeLa cells to copper toxicity by promoting copper-induced apoptosis. The inhibition effect of excessive copper on cell proliferation was also enhanced by overexpressed CUTA isoform2. So CUTA isoform2 was implicated to be involved in the cytotoxicity of copper.
EN
Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.
EN
Sequential cleavage of genomic DNA into large-scale DNA fragments of 50-300-kb, followed by formation of mono- and oligonucleosomal DNA fragments, is a biochemical hallmark of programmed, cell death (apoptosis). The endonuclease DFF40/CAD mediates regulated internucleosomal DNA fragmentation and chromatin condensation in cells undergoing apoptosis. DFF40 hypersensitive sites were detected in purified HeLa cell nuclei, and excision of 50-kb DNA fragments preceded formation of oligonucleosomal DNA ladders in nuclei treated with the nuclease. Topoisomerase II, but not topoisomerase I, stimulates DFF40 activity on plasmid DNA substrates. This suggests that interactions of DFF with the nuclear matrix-bound topoisomerase II may be involved in formation of DFF40 hypersensitive sites.
EN
Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.