The center of the algebra of continuous functions on the quantum group SUq(2) is determined as well as centers of other related algebras. Several other results concerning this quantum group are given with direct proofs based on concrete realization of these algebras as algebras of operators on a Hilbert space.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let W be a finite Coxeter group and let λW be the Haar measure on W; i.e., λW(ω) = |W|−1 for every ω ∈ W: We prove that there exist a symmetric set T ̸= W of generators of W consisting of elements of order not greater than 2 and a finite set of probability measures {μ1..., μk} with their supports in T such that their convolution product μ1 ∗ ...∗ μk = λW:
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.