Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HCC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The most common type of liver cancer is hepatocellular carcinoma (HCC), which begins in hepatocytes. The HCC, like most types of cancer, does not show symptoms in the early stages and hence it is difficult to detect at this stage. The symptoms begin to appear in the advanced stages of the disease due to the unlimited growth of cancer cells. So, early detection can help to get timely treatment and reduce the mortality rate. In this paper, we proposes a novel machine learning model using seven classifiers such as K-nearest neighbor (KNN), random forest, Naïve Bayes, and other four classifiers combined to form stacking learning (ensemble) method with genetic optimization helping to select the features for each classifier to obtain highest HCC detection accuracy. In addition to preparing the data and make it suitable for further processing, we performed the normalization techniques. We have used KNN algorithm to fill in the missing values. We trained and evaluated our developed algorithm using 165 HCC patients collected from Coimbra's Hospital and University Centre (CHUC) using stratified cross-validation techniques. There are total of 49 clinically significant features in this dataset, which are divided into two groups such as quantitative and qualitative groups. Our proposed algorithm has achieved the highest accuracy and F1-score of 0.9030 and 0.8857, respectively. The developed model is ready to be tested with huge database and can be employed in cancer screening laboratories to aid the clinicians to make an accurate diagnosis.
EN
Chronic liver disease and cirrhosis, that can lead to liver failure, are major public health issues, with liver transplantation as the only effective treatment. However, the limited availability of transplantable organs has spurred research into alternative therapies, including bioartificial livers. To date, liver hybrid support devices, using porcine hepatocytes or hepatoma-derived cell lines, have failed to demonstrate efficacy in clinical trials. Here, for the first time, we report the construction of a model of biologically active function block of bioartificial liver based on a hollow fiber bioreactor populated with genetically modified hepatic cells. For comprehensive comparison the culturing of hepatic cells was carried out in both static and dynamic conditions in a medium that flowed through porous polysulfone capillaries. The most crucial parameters, such as cell viability, glucose consumption, albumin secretion and urea production, were analyzed in static conditions while glucose usage and albumin production were compared in dynamic cell cultures. This model has the potential to improve the development of bioartificial liver devices and contribute to the treatment of patients with impaired liver function.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.