Due to environmental concerns, the use of alternative fuel is rapidly expanding around the world, making it imperative to fully understand the impacts of diesel on pollutant formation. The aim of this work is to increase the engine performance with reduced emissions using diesel blends from different feed stocks and to compare that with the diesel. In the Indian context linseed can play an important role in the production of alternative fuel using diesel. The climatic and soil conditions of India are convenient for the production of linseed crop. The blend is prepared from diesel, linseed oil and Leishman‘s solution by stirring process. The performance study of a diesel engine with these diesel blends were carried out at different compression ratios and loads. The combustion performance parameters like Mechanical, Volumetric, Brake thermal efficiencies and Specific Fuel Consumption are all noted. By applying Grey Relation Analysis, the best running condition for the engine within the chosen range are decided. The sample containing 95% diesel with 3% linseed oil and 2% solution gives better performance at a compression ratio of 18 during high load conditions.
Throughout the casting process, mold filling plays a very significant role in the casting quality control. It is important to study the effect of gating system design on ingate velocity of the metal which affects the mechanical properties of casting. The effect of varying the design of four gating system elements namely pouring cup, sprue height, runner and ingate design on the multiple responses like tensile strength and percentage elongation is studied using a Taguchi’s L9 OA. The Taguchi technique was coupled with a Grey Relational Analysis (GRA) to obtain a Grey Relational Grade (GRG) for evaluating multiple responses. ANOVA has been applied to identify the significance of different parameters and it was found that the pouring cup design and the runner cross-section along its length collectively contributed above 76% of the total GRG value. Finally, the confirmation tests were performed to validate the predicted optimized results and it established an improvement of 9.90% from the initial design.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.