The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player can see everybody excluding himself. We consider such a problem on a graph, where vertices correspond to players, and a player can see each player to whom he is connected by an edge. The solution of the hat problem is known for cycles and bipartite graphs. We investigate the problem on a union of disjoint graphs.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly Parter vertices. Then, we investigate the change in multiplicity of an eigenvalue based upon a change in an edge value. We show how the multiplicity of the eigenvalue changes depending upon the status of the edge and the edge value. This work explains why, in some cases, edge values have no effect on multiplicities. We also characterize, more precisely, how multiplicity changes with the removal of two adjacent vertices.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.