The Goss texture is a characteristic feature of grain-oriented transformer steel sheets. Generator sheets, which are produced as non-oriented steel sheets, should have isotropic features. However, measurement results of generator sheets, confirmed by crystallographic studies, indicate that these sheets are characterized by certain, quite significant anisotropy. The first purpose of this paper is to present the influence of textures of generator and transformer steel sheets on their magnetization characteristics. The second aim is to propose a method which takes into account the sheet textures in the calculations of magnetization curves. In calculations of magnetization processes in electrical steel sheets, models in which the plane of a sheet sample is divided into an assumed number of specified directions are used. To each direction a certain hysteresis loop, the so-called direction hysteresis, is assigned. The parameters of these direction hystereses depend, among other things, on the texture type in these steel sheets. This paper discusses the method which calculates the parameters of these direction hystereses taking into account the given sheet texture. The proposed method gives a possibility of determining the magnetization characteristics for any direction of the field intensity changes.
This study described a method for determining the magnetic field in transformer steel sheets for any magnetisation direction. In the proposed approach, limiting hysteresis loops for the rolling and transverse directions were used. These loops, which were determined separately in both directions, were modified depending on the direction of magnetisation. The assumed area of the magnetic field occurrence was divided into elementary segments, and the appropriate components of field strength and flux density were assigned to the edges and elementary segments of the grid dividing this area. The relationships between the flux density and field strength along both the rolling and transverse directions in the elementary segments were introduced into the equations of the magnetic field distribution, which were based on Maxwell’s equations in the integral form. These equations facilitated the determination of changes in the magnetic field, considering the magnetic hysteresis. The correctness of these equations was validated through comparisons of the results of numerical calculations with the analogous results of measurements performed using a laboratory package of transformer sheets.
W artykule omówiono główne zagadnienia technologii produkcji blachy transformatorowej ze stali krzemowej o zorientowanym ziarnie. Przedstawiono funkcjonowanie drugiej fazy działającej jako inhibitor rekrystalizacji wtórnej. Przedyskutowano wpływ poszczególnych mikrododatków na własnosci stali transformatorowej. Zdefiniowano najważniejsze etapy cyklu produkcyjnego i przedstawiono nowe koncepcje optymalizacji technologii.
EN
The article discusses main technological topics of transformer sheet production of grain oriented silicon steel. The function of second phase acting as the inhibitor in secondary recrystallization as well as the influence of micro - alloying elements on the properties of transformer steel were presented. The most important stages of production cycle were defined and the new concepts of technology optimization were presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.