We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study concentration properties for vector-valued maps. In particular, we describe inequalities which capture the exact dimensional behavior of Lipschitz maps with values in R^k. To this end, we study in particular a domination principle for projections which might be of independent interest. We further compare our conclusions with earlier results by Pinelis in the Gaussian case, and discuss extensions to the infinite-dimensional setting.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator $L:= d^2/dx^2 - 2xd/dx$, x ∈ ℝ, need not be of weak type (1,1). A function in $L^1(dγ)$, where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectra theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen-Loève expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy-Ciesielski construction of Brownian motion.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An example of a nonzero [sigma]-finite Borel measure [my] with everywhere dense linear manifold I[my] of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space l[2] such that [my] and any shift [my]^[alpha] of [my] by a vector [alpha] is an element of l[2] \ I[my] are neither equivalent nor orthogonal. This extends a result established in [7].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.