Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Gaussian measure
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The Gaussian measure on algebraic varieties
100%
EN
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
2
Content available remote On measure concentration of vector-valued maps
80%
EN
We study concentration properties for vector-valued maps. In particular, we describe inequalities which capture the exact dimensional behavior of Lipschitz maps with values in R^k. To this end, we study in particular a domination principle for projections which might be of independent interest. We further compare our conclusions with earlier results by Pinelis in the Gaussian case, and discuss extensions to the infinite-dimensional setting.
3
80%
EN
The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator $L:= d^2/dx^2 - 2xd/dx$, x ∈ ℝ, need not be of weak type (1,1). A function in $L^1(dγ)$, where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
4
Content available remote Karhunen-Loève Decomposition of Gaussian Measures on Banach Spaces
80%
EN
The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectra theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen-Loève expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy-Ciesielski construction of Brownian motion.
5
Content available remote On an invariant Borel measure in Hilbert space
51%
EN
An example of a nonzero [sigma]-finite Borel measure [my] with everywhere dense linear manifold I[my] of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space l[2] such that [my] and any shift [my]^[alpha] of [my] by a vector [alpha] is an element of l[2] \ I[my] are neither equivalent nor orthogonal. This extends a result established in [7].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.