Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Galton Board
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aspects of the Nosé and Nosé-Hoover dynamics developed in 1983–1984 along with Dettmann’s closely related dynamics of 1996, are considered. We emphasize paradoxes associated with Liouville’s Theorem. Our account is pedagogical, focused on the harmonic oscillator for simplicity, though exactly the same ideas can be, and have been, applied to manybody systems. Nosé, Nosé-Hoover, and Dettmann flows were all developed in order to access Gibbs’ canonical ensemble directly from molecular dynamics. Unlike Monte Carlo algorithms dynamical flow models are often not ergodic and so can fail to reproduce Gibbs’ ensembles. Accordingly we include a discussion of ergodicity, the visiting of all relevant microstates corresponding to the desired ensemble. We consider Lyapunov instability too, the usual mechanism for phasespace mixing. We show that thermostated harmonic oscillator dynamics can be simultaneously expanding, incompressible, or contracting, depending upon the chosen “phase space”. The fractal nature of nonequilibrium flows is also illustrated for two simple two-dimensional models, the hard-disk-based Galton Board and the time-reversible Baker Map. The simultaneous treatment of flows as one-dimensional and many-dimensional suggests some interesting topological problems for future investigations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.