The results of experimental hybridisation between some chromosome subraces belonging to the X0 and XY chromosome races of the brachypterous grasshopper P. sapporensis are presented. Pre-zygotic reproductive isolation mechanisms in experimental pairs were not confirmed. In crossings of XY-standard x X0-standard and XY-standard x X0-Naganuma chromosome subraces, a zygotic barrier has been found. All embryos of XY-standard x X0-standard crosses and the vast majority of embryos of XY-standard x X0-Naganuma crosses were obtained from female diploid or haploid/diploid cells as a result of parthenogenesis. In very rare cases, when the zygotic barriers had been surmounted, normal embryo heterozygotes and a F1 hybrid generation were obtained in XY-standard x X0-Naganuma crosses. On the contrary, crosses between the XY-Tanno and X0-standard subraces gave viable offspring in spite of many chromosome differences such as a X-A translocation and fixed pericentric inversions in four pairs of autosomes. The results obtained do not support the hypothesis that chromosomal differences play a key role in restricting gene flow between X0 and XY races of P. sapporensis. The presence of crossing barriers explains the phenomena of the purity of the X0 and XY chromosomes races.
The analysis of the distribution of repetitive DNA of the B chromosomes of Podisma sapporensis in the A and B chromosomes of the natural populations and in A chromosomes of three other species of the Podismini grasshoppers were made. DNA-libraries of the B chromosome and the euchromatic segment of the A chromosome of P. sapporensis were generated by meiotic chromosome microdissection followed by degenerated oligonucleotide primed polymerase chain reaction (DOP-PCR). Paints based on these DNA-libraries were used for FISH analysis to detect localization of homologous sequences in A and B chromosomes of P. sapporensis from different natural populations. On the basis of the FISH analysis the authors suggest that evolution of the B chromosomes in Podisma sapporensis was associated mainly with the insertions of ?alien DNA sequences? into ancestral A chromosome and their further amplification. The number of initial sites of amplifications differed in the different Bs, the distance between these sites also varying. Karyotype evolution in P. sapporensis was associated partly with the insertion of ?alien DNA sequences? into pericentromeric chromosomal regions. Insertion into the small short arms of the acrocentric chromosomes followed, with the DNA amplification leading to the formation of the additional C-heterochromatic arms or euchromatic-like regions of different size.
Chromosome numbers and C-banding patterns in the spermatogenesis of seven species of Pamphagidae grasshoppers from the Caucasus, Central Asia, and Trabsbaikalia region of Russia are reported. The patterns of origin and evolution of the neo-XY/neo-XX sex determination in Pamphagidae are discussed.
The results of comparative karyotypical studies of the Caelifera orthopteran insects from Russia, Kazakhstan, Central, Asia and the Caucasus are summarized. Chromosome complements for 166 species belonging to the families: Eumastacidae (subfamily Gomphomastacinae; 2n male=19,21), Tetrigidae (2n male=13), Acrididae (2n male=23, 22, 21, 19, 17, 16), Pyrgomorphidae (2n male=19), and Pamphagidae (2n male=19,18) are presented.
Seven categories of B chromosomes found in the brachypterus grasshopper Podisma sapporensis from Hokkaido populations differ in structure, size, and C-band content. The interchange between B and one autosome from M3 and sporadically M7 was observed in most of the populations examined. Such an interaction between standard and non-standard chromosomal set provides an insight into the integration of supernumerary chromosome. In addition, C-heterochromatin polymorphism was also identified in male karyotypes in some populations. These facts indicate P. sapporensis is a highly polymorphic species from the cytogenetic point of view.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.