Poszukiwanie skutecznych metod wyboru informacji wynika z obserwowanego obecnie nadmiaru danych. W artykule jest opisana metoda GQM (Goal, Question, Metric) wykorzystywana w informatyce między innymi do budowy wielowymiarowej funkcji jakości oprogramowania. Opiera się ona na jawnym zdefiniowaniu celu wyboru danych z uwzględnieniem punktu widzenia użytkownika. W artykule wykazano, że metoda ta może być również wykorzystywana do poszukiwania i wyboru danych z dedykowanych zbiorów informacji dziedzinowych. Metoda pozwala na ograniczenie zbioru danych w ściśle określony sposób z uwzględnieniem cech dziedziny, celu, w jakim dane będą wykorzystywane i konsekwencji wynikających z odrzucenia pozostałych danych. Metoda ta może być również stosowana do wyboru i budowy zorganizowanych w formie taksonomii zbiorów danych opisanych w języku naturalnym. Należy przypuszczać, że skuteczne metody wyboru danych będą w przyszłości powszechnie wykorzystywane w wyszukiwaniu i prezentacji informacji.
EN
Considering the excess of available data, it is necessary to design effective methods of data selection. This paper presents an application of the GQM (Goal, Question, Metric) method in data selection and processing. The GQM method is typically used in software development to define and specify multidimensional software quality functions that assume explicit definition of data selection purpose depending on user or software developer requirements. In this paper, it is shown that the method may also be used to select appropriate data from different dedicated domain data sets. The method enables a user to narrow the set of selected data in a strictly specified manner considering the characteristic of a target domain, the purpose of data selection and consequences of potential data rejection. As shown in the paper, the method may be applied to select data from educational data sets, taxonomy-based literature sets and natural language description of object oriented structures.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Mashup user interfaces provides their functionality through the combination of different services. The integration of such services can be solved by using reusable and third-party components. Furthermore, these interfaces must be adapted to user preferences, context changes, user interactions and component availability. Model transformation is a useful mechanism to address this adaptation but normally these operations only focus on the functional requirements. In this sense, quality attributes should be included in the adaptation process to obtain the best adapted mashup user interface. This paper proposes a generic quality-aware transformation process to support the adaptation of software architectures. The transformation process has been applied in ENIA, a geographic information system, by constructing a specific quality model for the adaptation of mashup user interfaces. This model is taken into account for evaluating the different transformation alternatives and choosing the one that maximizes the quality assessments. The approach has been validated by a set of adaptation scenarios that are intended to maximize different quality factors and therefore apply distinct combinations of metrics.
Context: Software measurement programs are essential to understand, evaluate, improve and predict the software processes, products and resources. However, successful implementation of software measurement programs (MPs) in small and medium enterprises (SMEs) is challenging. Objective: To perform a detailed analysis of studies on MPs for highlighting the existing measurement models, tools, metrics selection methods and challenges for implementing MPs in SMEs. Methods: A Systematic Mapping Study (SMS) is conducted. Results: In total, 35 primary studies are comprehensively analyzed. We identified 29 software measurement models and 4 tools specifically designed for MPs in SMEs. Majority of the measurement models (51%) are built upon software process improvement approaches. With respect to measurement purposes of models, the distribution of MPs was identified as: characterization (63%), evaluation (83%), improvement (93%) and prediction (16%). Majority of primary studies discussed the use of measurement experts and experience (60%) followed by the use of measurement standards (40% and the use of automated tools (22%) for metrics selection in MPs. We found that the SMEs and large organization face different challenges as studies in SMEs report challenges that exist even before the implementation of MPs due to infrastructure and management processes of SMEs. The challenges reported by studies in large organizations are mostly related to the issues discovered while implementing MPs. Conclusion: The analysis of measurement models, tools, metrics selection methods and challenges of implementing MPs should help the SMEs to make a feasibility study before implementing a MP.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.