Hybrydowe kompozyty warstwowe FML (Fibrę Metal Laminates) stanowią coraz powszechniejszą grupę materiałów kompozytowych w budowie statków powietrznych. Cechują się bardzo pożądanymi właściwościami, tj. dużą sztywnością przy zachowaniu niskiej masy, a także wysoką wytrzymałością zmęczeniową. Ze względu na dobre cechy użytkowe, kompozyty warstwowe są atrakcyjne dla innych gałęzi przemysłu, m.in. motoryzacji i przemysłu maszynowego. Ograniczeniem rozpowszechniania kompozytów FML jest złożona, tym samym kosztowna technologia ich wytwarzania wymagająca stosowania autoklawu. W pracy przedstawiono badania kompozytu z grupy FML typu GLARE wykonanego dwiema metodami poza autoklawem. Rozpatrywany kompozyt wykonano z blach ze stopu aluminium 2024-T3 oraz preimpregnatu szklanego, w jednej z wersji wykonania, natomiast w drugiej użyto suchej tkaniny szklanej. Przeprowadzono badania jakości struktury kompozytu przy użyciu tomografu. Wykonano badania wytrzymałości statycznej na rozciąganie i rozwarstwienie. Opisane badania wykazały, że bez użycia autoklawu istnieje możliwość uzyskania dostatecznej jakości kompozytu, mogącego mieć zastosowanie w mniej odpowiedzialnych węzłach konstrukcji wyrobów, jednakże w przedstawionych próbach wykazano brak dostatecznej adhezji pomiędzy warstwami kompozytu.
EN
Fibre Metal Laminates (FML) are an increasingly common group of composite materials used in aerospace industry. They characterized by desirable properties for the aerospace and automotive industry i.e. high stiffness, lightweight and good fatigue properties. Because of these properties FML composites are desirable also in other Industries, including automotive or machine industry. A limitation of the dissemination of FML composites is complex and thus costly manufacturing process that requires the use of an autoclave. The paper presents the study of GLARE type composite that is member of FML group fabricated without use autoclave. Considered composites were made of an aluminium alloy 2024-T3 and glass fibre prepreg in one embodiment, while the second uses a dry glass woven fabric. Testing of composite structures was performed by use a tomograph. Research of tensile and peel static strength were realized. These tests have shown that without the use of an autoclave it is potentially possible to obtain sufficient performance composite which could be used in less responsible nodes construction of the devices, but in the presented samples demonstrated a lack of sufficient adhesion between the layers of the composite. The paper presents the study of GLARE type composite that is member of FML group fabricated without use autoclave. Considered composites were made of an aluminium alloy 2024-T3 and glass fibre prepreg in one embodiment, while the second uses a dry glass woven fabric. Testing of composite structures was performed by use a tomograph. Research of tensile and peel static strength were realized. These tests have shown that without the use of an autoclave it is potentially possible to obtain sufficient performance composite which could be used in less responsible nodes construction of the devices, but in the presented samples demonstrated a lack of sufficient adhesion between the layers of the composite.
Laminaty metalowo-włókniste (Fibre Metal Laminates – FML) stanowią nowoczesną grupę hybrydowych materiałów kompozytowych. Składają się z kolejno ułożonych (na przemian) warstw metalu i kompozytu polimerowego. Laminaty FML łączą w sobie właściwości zarówno metalu, jak i materiału kompozytowego wzmacnianego włóknami. Charakteryzują się dużą tolerancją uszkodzeń, dobrą wytrzymałością zmęczeniową, małą gęstością, odpornością na korozję. W pracy przedstawiono wyniki badań dotyczących odporności na uderzenia dynamiczne o małej prędkości nowej generacji hybrydowych materiałów kompozytowych typu: aluminium/kompozyt polimerowy wzmacniany włóknami szklanymi. Laminaty wytworzono techniką autoklawową w warunkach laboratoryjnych Katedry Inżynierii Materiałowej Politechniki Lubelskiej. Badania przeprowadzono w warunkach laboratoryjnych w temperaturze pokojowej na maszynie typu młot spadowy zgodnie z normami EN D7136/ D7136M. Wyniki badań pozwoliły na określenie odporności na dynamiczne uderzenia o małej prędkości oraz opracowanie zależności wpływu energii uderzenia na strefę zniszczenia materiału (pole powierzchni, głębokość), a także wpływu konfiguracji warstw kompozytowych na tolerancję materiału na uszkodzenie typu impact. Na podstawie przeprowadzonych badań stwierdzono, że badane laminaty FML typu aluminium/kompozyt polimerowy wzmacniany włóknami szklanymi charakteryzują się wysoką odpornością na uderzenia dynamiczne o małej prędkości (rys. 2) oraz wykazano, że wraz ze wzrostem energii rośnie w sposób liniowy pole powierzchni uszkodzenia oraz jego głębokość (rys. 6, 7). Ponadto układy wielokierunkowe cechuje większa odporność na tego typu uderzenia w porównaniu z układami jednokierunkowymi (rys. 2, 3). Dowiedziono, że istnieje możliwość kształtowania odporności laminatów FML na uderzenia dynamiczne prze zmianę ułożenia poszczególnych komponentów.
EN
Fiber-metal laminates (Fibre Metal Laminates – FML) are a modern group of hybrid composite materials. They are composed of sequentially arranged (alternately) layers of metal and polymer composite. FML laminates combine the properties of both: elastic-plastic metal and fiber reinforced composite material. They are characterized by high tolerance of damage, high fatigue strength, low density, resistance to corrosion. The paper presents a study on low-velocity impact resistance of a new generation of hybrid-type composite material: aluminum/polymer composite reinforced with glass fibers. Laminates prepared by autoclaving technique, in laboratory conditions in the Materials Engineering Department of Lublin University of Technology. The study was conducted in the laboratory, the normal temperature, using drop-weight impact machine according to with EN D7136/D7136M. The results allowed to determine the low-velocity impact resistance and the development of impact energy depending on the area of destruction of material (damage area, maximum deformation), and the influence of the number and configuration of layers of metal and composite damage tolerance of the material on low-velocity impact. Based on the results it was found that the test type of FML laminates aluminum/polymer composite reinforced with glass fibers have a high lowvelocity impact resistance (Fig. 2) and showed that the higher energy makes increase the damage area and its maximum deformation in a nearly linear (Fig. 6, 7). In addition, multisystems have higher resistance to this type of impact in comparison to unidirectional systems (Fig. 2, 3). It has been proven that there is a possibility to form FML laminates resistance to impact the dynamic changing the arrangement of individual components.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A Fiber Metal Laminate (FML) consists of a laminate of several thin metal layers bonded with fiber–reinforced layers of composite materials. In this paper, the response of a fiber metal laminate is analysed on the basis of the residual velocity of the impactor. With the help of Design of Experiments (DOE) the data sets are generated and the residual velocity of the impactor was obtained by using Finite Element Analysis (FEA) software ABAQUS/Explicit. The FEA results are compared with experimental results available in the literature. Analysis of Variance (ANOVA) is used to understand the influence of process parameters on the response of FMLs. Results show that impactor geometry and thickness of the FML plate were the significant process parameters related to the response of low velocity impact analysis of FML and fiber configurations were found to be insignificant with regard to low velocity impact analysis performance. Finally the results show that aluminium based Aramid fibers (ARALL) and aluminium based glass fibers (GLARE) have higher impact strength when compared to other kinds of FMLs such as aluminium based carbon fibers (CARALL). Stress distribution in glass epoxy based FMLs are also studied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.