A metric space M is said to have the fibered approximation property in dimension n (briefly, M ∈ FAP(n)) if for any ɛ > 0, m ≥ 0 and any map g: $$ \mathbb{I} $$ m × $$ \mathbb{I} $$ n → M there exists a map g′: $$ \mathbb{I} $$ m × $$ \mathbb{I} $$ n → M such that g′ is ɛ-homotopic to g and dim g′ ({z} × $$ \mathbb{I} $$ n) ≤ n for all z ∈ $$ \mathbb{I} $$ m. The class of spaces having the FAP(n)-property is investigated in this paper. The main theorems are applied to obtain generalizations of some results due to Uspenskij [11] and Tuncali-Valov [10].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.