Let ConvF(Rn) be the space of all non-empty closed convex sets in Euclidean space Rn endowed with the Fell topology. We prove that ConvF(lRn) ≈ Rn x Q for every n > 1 whereas ConvF(R) ≈ R x I.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to study uniform and topological structures on spaces of multifunctions. Uniform structures on hyperspaces compatible with the Fell, the Wijsman and the Hausdorff metric topology respectively are studied and the links between them are explored. Topologies induced by the above uniformities on spaces of multifunctions are considered and compared. Also connections between uniform convergence of multifunctions and their equi-semicontinuity are investigated.
The generalized compact-open topology τc on partial continuous functions with closed domains in X and values in Y is studied. If Y is a non-countably compact Čech-complete space with a Gδ-diagonal, then τc is Čech-complete, sieve complete and satisfies the p-space property of Arhangel'skii, respectively, if and only if X is Lindelof and locally compact. Lindelofness, paracompactness and normality of τc is also investigated. New results are obtained on Čech-completeness, sieve completeness and the p-space property for the compact-open topology on the space of continuous functions with a general range Y.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.