Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Eichhornia crassipes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The performance of electrically stimulated phytoremediation in the removal of lead, cadmium and copper was assessed in this study. A combination of phyto and electro remediation was attempted in this study for the remediation of the metals from water. Three tanks were setup with different operating conditions for this experiment: control A (only phytoremediation system), control B (only electro remediation) and treatment (combination of phyto and electro remediation). The electrically enhanced phytoremediation system and electro remediation system were operated 2h/day at voltages of 4V for 25 days continuously. In this experiment, the Eichhornia crassipes, an able phytoremediator exhibited efficient and fast removal of heavy metals from synthetic solution in electro assisted phytoremediation system. The electrically enhanced phytoremediation using aluminum sheet electrodes showed better and effective removal of Cd, Pb and Cu than aluminum rod electrodes. A more favorable and moderate increase of pH was noticed in electrically stimulated phytoremediation system. Eichhornia crassipes has tremendous potential to reduce maximum amount of cadmium (within 15 days), lead (within 15 days) and copper (within 10 days) under electrically stimulated condition. Under electrified condition, maximum amount of Cd and Cu was accumulated in the aerial parts of Eichhornia crassipes but maximum concentration of Pb was attained by roots. This indicates the high heavy metal accumulation capacity of Eichhornia crassipes under electrified conditions. The results showed that 4V voltage is probably suitable to stimulate the Eichhornia crassipes to synthesize more chlorophyll and voltage can improve growth and ability to resist adverse circumstances by promoting chlorophyll synthesis. Eichhornia crassipes stimulated by an electric field has grown better and assimilated more metal. Bioconcentration factor (BCF) an index of hyperaccumulation, indicates that electrically stimulated Eichhornia crassipes is a good hyper accumulator of Cd (BCF = 1118.18) and Cu (BCF = 1152.47) and a moderate accumulator of Pb (BCF = 932.26). Translocation ability (TA) ratio indicates that Eichhornia crassipes have the ability to translocate more amounts of Pb, Cd and Cu to its upper portion under electrified condition. The results imply that the electro-phytoremediation technique seems to be promising in the treatment of wastewater contaminated with heavy metals.
EN
Rawapening Lake is one of Indonesia’s national priority lakes that is experiencing environmental problems which are urgently required to be solved due to its functions. The decline in the environmental quality of Rawapening Lake includes sedimentation, water pollution and excess of nutrients, especially Phosphorus (P) and Nitrogen (N) into the lake that induced uncontrolled growth of aquatic plants, one of which is water hyacinth (Eichhornia crassipes (Mart.) Solms). Many activities had been done to reduce the covering of water hyacinth in Rawapening Lake that tends to increase by the time, but no significant result has been achieved. Therefore, this research was conducted in order to study the growth rate of water hyacinth with mesocosm in Rawapening Lake as a baseline to develop suitable management. There were three different sites, namely: Site I in the floating net cage area (FNCA), Rowoboni Village, Site II in the natural area of Bejalen Village which is far from the aquaculture sites, and Site III in the upper reaches of the Tuntang river, Asinan Village. The research was performed in November-December 2019 with the measurements of growth rate, addition number clump and water hyacinth covering every week. The experiment was conducted in the 1 x 1 meter mesocosm, with three replication in every site. In every mesocosm water hyacinth with similar initial weight of 160 grams and number of leaves 6-7 strands were grown in the mesocosm. On day 7 (H7) the average wet weight of water hyacinth increased by 201%. In the fourth week (H28) the average wet weight of water hyacinth increased by 788% compared to the initial weight when planted. The highest relative growth rate (RGR) value of water hyacinth was at site III (7.26%/ day), followed by Site I (7.03%/day), and Site II (6.40%/day), respectively. The doubling time (DT) value of water hyacinth at the site I was 9.9 day, site II – 10.8 day, and site III – 9.6 day. One clump of water hyacinth weighing 160 grams was able to cover 1 m2 of mesocosm within 21 days. On the basis of these results, to manage water hyacinth blooms one has to consider its growth rate.
EN
Eichhornia crassipes is a floating macrophyte. It is capable of assimilating large quantities of toxic metals, some of which are essential for plant growth. Water Hyacinth grows rapidly in water with a high level of nutrients like nitrogen and phosphorous. The plants have been shown to absorb trace elements such as Silver (Ag), Lead (Pb), Cadmium (Cd) and Copper (Cu) reported by Lu et al [1]. The purpose of this study is to determine the distribution of heavy metals in different parts of the Water Hyacinth . Such a detail study has been taken for the first time. It is expected that the metal distribution within the plant species would be a representation of the concentration and distribution of the water in which it is found. Plants have the ability to accumulate non-essential and essential trace elements and this ability could be harnessed to remove pollutant metals from the environment. Aluminum, cadmium, calcium, copper, iron, lead, magnesium and zinc have been found in different amounts in roots, stems , leaves and flowers.
EN
Rawapening is one of Indonesia’s national priority lakes, which is experiencing environmental damage and urgently needs rehabilitation. The decline in water quality is caused by sedimentation and organic and inorganic waste that triggers eutrophication. Rehabilitation of Lake Rawapening is important to improve the health of freshwater resources. The ecological engineering approach is the most appropriate choice to rehabilitate these water conditions. The character of the macrophyte is the key factor for successful rehabilitation. Three macrophytes, Hydrilla verticillata (L. f.) Royle, Eichhornia crassipes (Mart.) Solms and Salvinia molesta D.Mitch., charactierized. Their characteristics, including growth rate, salt tolerance, dissolved oxygen production and consumption, nutritive value, and preferred food by herbivore fish were evaluated. The results indicated that H. verticillata has the highest growth rate, is the most tolerant to salinity change, produces more oxygen, has the highest nutritive value, and is the most preferred food for herbivore fish. H. verticilata is recommended as the best candidate to be used as a forcing function to drive the Rawapening lake into more economic and environmentally valuable for a resident. As the other two species also have high nutritive value, they can be recommended as a source of feed for animals as well. For better management, these two macrophytes required more often regular removal. Other economic and environmental values can also be achieved from E. crassipes and S. molesta.
EN
At the current stage of discharge and treatment of municipal sewage and other types of wastewater in the territory of Ukraine, traditional technologies of biological treatment in aero-tanks by the process of aerobic oxidation involving active silt characterized by low efficiency are largely used. It was established that biological treatment and additional treatment of sewage involving hydrophytes are efficient. The research on wastewater quality and the efficiency of sewage treatment was conducted in three phases: Phase 1 – “the quality before treatment”, Phase 2 – “the quality after mechanical-biological treatment” at the existing municipal treatment plants, Phase 3 – “the quality after additional treatment by hydrophytes”. In order to determine the efficiency of using hydrophytes additional treatment, Eichhornia crassipes (water hyacinth) and the perennial aquatic plant Lemna minor were planted in one treatment pond. The results of the experiment made it possible to determine high efficiency of using hydrophytes for additional sewage treatment. In particular, the efficiency of additional treatment in the treatment ponds removing the residue of suspended pollutants for 40 days was 32%, toxic salts – 13.0–23.0%, oil products – 30.0%, biogenic substances – 68.5–83.3%. It caused a drop in the values of chemical and biological oxygen demand for 5 days by 89.6% and 61.2%, respectively. The efficiency of sewage treatment removing toxic salts and oil products reached 97.7%, whereas in the case of mineral and organic pollutants – up to 99%. That contributed to a considerable increase in the wastewater quality by the criteria for fisheries. In particular, high nutritional value of Eichhornia crassipes and Lemna minor allowed obtaining 12.5 tons of hydrophyte wet mass that can be used as green manure, feeds for farm animals, poultry and fish.
EN
An attempt was made to optimize the minimum required inoculation load of the weevils on three growth stages of waterhyacinth, based on reduction of fresh biomass, number of leaves and ramifications. The small growth stage was controlled earlier than the waterhyacinth of middle growth stage, corresponding to the increase in number of weevils per plant. The large plants could not be controlled even with the inoculation pressure of 20 weevils per plant because of high growth rate. This study suggests that Neochetina spp. has the potential to keep the population of the macrophyte at a subeconomic density, through a basic inoculation load of weevils in due course of time.
PL
Podjęto próbę określenie optymalnej liczby chrząszczy Neochhetina spp., użytego do zwalczania Eichhornia crassipes w trzech fazach rozwojowych roślin biorąc pod uwagę: świeżą biomasę, liczbę liści i rozgałęzień. Zwalczanie E. crassipes we wczesnych fazach rozwoju następowało wcześniej niż zwalczanie roślin będących pełni rozwoju, co odpowiadało zwiększeniu liczby chrząszczy na roślinie. Dużych roślin nie można było zwalczyć nawet w przypadku wysokiego nasilenia występowania, wynoszącego 20 chrząszczy na roślinę z powodu szybkiego tempa wzrostu roślin. Te badania sugerują, że Neochetia spp. posiada potencjał utrzymania populacji E. crassipes poniżej ekonomicznego poziomu szkodliwości, co związane jest z ilością chrząszczy występujących na przestrzeni czasu.
EN
Life cannot exist without water. Appropriate management of water, from the water’s source to its utilization, is necessary to sustain life. Aquatic weeds pose a serious threat to aquatic environments and related eco-environments. Short- and long-term planning to control aquatic weeds is extremely important. Water hyacinth, Eichhornia crassipes (Mart.) Solms, is one of the world’s worst pests with a bad reputation as an invasive weed. In this study we are seeking the possibility of using certain chemicals with a natural background, for controlling water hyacinth since there is a delicate balance that needs to be taken into account when using herbicides in water. Five compounds, namely: acetic acid, citric acid, formic acid, and propionic acid, in three concentrations (10, 15, and 20%) were applied (i.e. as a foliar application under wire-house conditions) and compared with the use of the herbicide glyphosate (1.8 kg ∙ ha–1). All of the five compounds performed well in the control of the water hyacinth. As expected, the efficacy increased as the concentration was increased from 10 to 20%. With formic and propionic acids, the plants died earlier than when the other acids or the herbicide glyphosate, were used. Acetic acid came after formic and propionic acids in terms of efficacy. Citric acid ranked last. Formic acid/propionic acid mixtures showed superior activity in suppressing water hyacinth growth especially at the rate of (8 : 2) at the different examined concentrations (3 or 5 or 10%) compared to the formic acid/acetic acid mixtures. Using the formic acid/propionic acid mixture (8 : 2; at 3%) in the open field, provided good control and confirmed the viability of these chemicals in the effective control of water hyacinth. Eventually, these chemical treatments could be used on water for controlling water hyacinth. In the future, these chemicals could probably replace the traditional herbicides widely used in this regard. These chemicals are perceived as environmentally benign for their rapid degradation to carbon dioxide and water. For maximum efficiency thorough coverage especially in bright sunlight is essential.
EN
The results showed that good growth and protein utilization was obtained with diets containing 18.04-20% groundnut cake and 14.76 to 15% water hyacinth meals. Further increase in the dietary water hyacinth led to a decline in growth and protein utilization. In general the protein digestibility was poor.
PL
Makuch orzecha ziemnego był częściowo zastępowany hiacyntem wodnym jako źródłem białka w diecie O. niloticus niloticus. Narybek był żywiony dwoma zestawami eksperymentalnych diet przez 70 dni. Diety były tak zestawione, by zawierały różne proporcje makucha orzecha ziemnego i mączki hiacynta wodnego (tabele I, II). Ryby były ważone raz na dwa tygodnie. Dobry wzrost i dobre zużycie białek zostało osiągnięte dla diet zawierających od 18,04 do 20% makucha orzecha ziemnego i od 14,76 do 15% mączki hiacynta wodnego. Strawność białek była mala. Wyższe wartości dla wskaźników PER, FCE i ANPU osiągnięto w serii eksperymentalnej A w porównaniu do serii B (tabele III, IV).
EN
The fingerlings were evaluated for growth and food utilization. The best growth and food utilization was obtained for fish on diet C45, which was a 45% of water hyacinth replacement of groundnut cake. Protein digestibilities of the whole diet were not significant. The economic advantage of using this cheap locally abundant but under-utilized weed as feed in solving the problem of developing a low input based fish culture technology for adoption by rural fish farmers were highlighted.
PL
Narybek O. niloticus niloticus ważący około 5 g żywiono przez 10 tygodni pięcioma różnymi izoazotowymi dietami zawierającymi makuch orzecha ziemnego zastępowany liśćmi hiacynta (E. crassipes) na poziomie 0, 15, 30, 45 i 60% (tabele I, II). W czasie eksperymentu kontrolowano temperaturę i pH dwa razy dziennie oraz rozpuszczalną materię organiczną i BZT5 raz na tydzień (tabela III). Wyniki wykazały, że pod względem ekonomicznym, najlepszy wzrost i zużycie pokarmu osiągnięto dla ryb na diecie C45, w której 45% makucha orzecha ziemnego zastąpiono mączką z hiacyntu. Wzrost zawartości hiacynta w diecie powyżej 45% nie wpływał na poprawę wzrostu (ryc. 1). Nie zaobserwowano istotnych różnic w strawności białka i suchej materii między różnymi dietami (tabela V, ryc. 2). Nie było również istotnych różnic w tempie przemiany pokarmu i tempie przemiany białka między kontrolą a pozostałymi dietami (tabela IV). Hiacynt wodny jest zalecany jako surowy materiał w przemysłowej produkcji pokarmu. Alternatywą może być jego użycie w produkcji pokarmu dla ryb przez wiejskie farmy rybne, ponieważ obecnie w Nigerii hiacynt występuje bardzo obficie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.